• Title/Summary/Keyword: Three-phase PWM strategy

Search Result 78, Processing Time 0.021 seconds

Parallel Connected High Frequency AC Link Inverters Based on Full Digital Control

  • Sha, Deshang;Guo, Zhiqiang;Deng, Kai;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.595-603
    • /
    • 2012
  • This paper presents a full digital control strategy for parallel connected modular inverter systems. Each modular inverter is a high frequency (HF) AC link inverter which is composed of a HF inverter and a HF transformer followed by a cycloconverter. To achieve equal sharing of the load current and to suppress the circulating currents among the modules, a three-loop control strategy, consisting of a common output voltage regulation (OVR) loop, individual circulating current suppression (CCS) loops and individual inner current tracking (ICT) loops, is proposed. The ICT loops are implemented with predictive current control from which high precision current tracking can be obtained. The effectiveness of the proposed control strategy is verified by simulation and experimental results from parallel connected two full-bridge HF AC link inverter modules.

Improved Control Strategy Based on Space Vectors for Suppressing Grid-Side Current Harmonics in Three-Phase Current Source Rectifiers with a Hybrid Switch

  • Xu, Yan;Lu, Guang-Xiang;Jiang, Li-Jie;Yi, Gui-Ping
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.497-503
    • /
    • 2015
  • This paper analyses the harmonic pollution to power grids caused by several high-power rectifiers, summarizes the requirements for rectifiers in suppressing grid-side current harmonics and optimizes a new-type of current source PWM rectifier with a hybrid switch. The rectifier with a hybrid switch boasts significant current characteristics and cost advantages in the high-power area. To further enhance the working frequency of the current source rectifier with a hybrid switch for suppressing grid-side harmonics and reducing the inductance size, this paper proposes an optimal control strategy based on space vector. It also verifies that the optimal control strategy based on space vector can reduce the total harmonic distortion of the grid-side current of the rectifier with a hybrid switch via circuit simulation and experimental results.

Implementaion of An Audio-Glass Amplifier by Controlling the Current of PWM Inverter (PWM 인버터 전류제어에 의한 오디오급 엠프 구현)

  • Lee, Eul-Jae;Kwon, Byong-Heon;Lee, Ha-Cheol;Cho, Kyu-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2704-2707
    • /
    • 1999
  • This paper presents a simple high power audio class amplifier which is controlled by a new current control switching method. Although this class D amplifier has an only one current control loop with the proposed switching method, a good performance can be obtained. And a novel switching strategy for driving stereo signal amplifier circuit with three phase full bridge is discussed also. With the simulation and experimental results, usefulness of the proposed amplifier is confirmed.

  • PDF

A Three-Phase High Frequency Semi-Controlled Battery Charging Power Converter for Plug-In Hybrid Electric Vehicles

  • Amin, Mahmoud M.;Mohammed, Osama A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.490-498
    • /
    • 2011
  • This paper presents a novel analysis, design, and implementation of a battery charging three-phase high frequency semi-controlled power converter feasible for plug-in hybrid electric vehicles. The main advantages of the proposed topology include high efficiency; due to lower power losses and reduced number of switching elements, high output power density realization, and reduced passive component ratings proportionally to the frequency. Additional advantages also include grid economic utilization by insuring unity power factor operation under different possible conditions and robustness since short-circuit through a leg is not possible. A high but acceptable total harmonic distortion of the generator currents is introduced in the proposed topology which can be viewed as a minor disadvantage when compared to traditional boost rectifiers. A hysteresis control algorithm is proposed to achieve lower current harmonic distortion for the rectifier operation. The rectifier topology concept, the principle of operation, and control scheme are presented. Additionally, a dc-dc converter is also employed in the rectifier-battery connection. Test results on 50-kHz power converter system are presented and discussed to confirm the effectiveness of the proposed topology for PHEV applications.

A Three-phase Current-fed DC-DC Converter with Active Clamp (연료전지용 3상 전류형 능동클램프 DC-DC 컨버터)

  • Cha, Han-Ju;Choi, Jung-Wan;Yoon, Gi-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.456-464
    • /
    • 2007
  • This paper proposes a novel three-phase current-fed active clamp DC-DC converter for fuel cells. A single common active clamp branch is used to limit transient voltage across the three-phase full bridge and to realize zero-voltage switching(ZVS) in all switches. To apply for the power generation system current-fed type has been combined with the three-phase power conversion system. The proposed approach has the following advantages: an increase (by a factor of three) of input current and output voltage chopping frequencies; lower RMS current through the inverter switches with higher power transfer capability; reduction in size of reactive later components and the power conditioning system; better transformer utilization; increase of the system reliability. Therefore, the proposed three-phase current-fed active clamp DC-DC converter is appropriate for the boost type DC-DC converter for fuel cells and also applicable for the photovoltaic and battery charge system. The paper details the analysis, simulation and hardware implementation of the proposed system. Finally, experimental results with the proposed PWM strategy demonstrate the feasibility of the proposed scheme on a 500W prototype converter.

Suppression of Common-Mode Voltage in a Multi-Central Large-Scale PV Generation Systems for Medium-Voltage Grid Connection (중전압 계통 연계를 위한 멀티 센트럴 대용량 태양광 발전 시스템의 공통 모드 전압 억제)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • This paper describes an optimal configuration for multi-central inverters in a medium-voltage (MV) grid, which is suitable for large-scale photovoltaic (PV) power plants. We theoretically analyze a proposed common-mode equivalent model for problems associated with multi-central transformerless-type three-phase full bridge(3-FB) PV inverters employing two-winding MV transformers. We propose a synchronized PWM control strategy to effectively reduce the common-mode voltages that may simultaneously occur. In addition, we propose that the existing 3-FB topology may also have the configuration of a multi-central inverter with a two-winding MV transformer by making a simple circuit modification. Simulation and experimental results of three 350kW PV inverters in a multi-central configuration verify the effectiveness of the proposed synchronization control strategy. The modified transformerless-type 3-FB topology for a multi-central PV inverter configuration is verified using an experimental prototype of a 100kW PV inverter.

Two Vector Based Direct Power Control of AC/DC Grid Connected Converters Using a Constant Switching Frequency

  • Mehdi, Adel;Reama, Abdellatif;Benalla, Hocine
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1363-1371
    • /
    • 2017
  • In this paper, an improved Direct Power Control (DPC) algorithm is presented for grid connected three phase PWM rectifiers. The new DPC approach is based on two main tasks. First the optimization of the look-up table, which is well-known in conventional DPC, is outlined for selecting the optimum converter output voltage vectors. Secondly a very simple and effective method is used to directly calculate their duty cycles from the power errors. Therefore, the measured active and reactive powers are made to track their references using hysteresis controllers. Then two vectors are selected and applied during one control cycle to minimize both the active and reactive power ripples. The main advantages of this method are that there is no need of linear current controllers, coordinates transformations or modulators. In addition, the control strategy is able to operate at constant switching frequencies to ease the design of the power converter and the AC harmonic filter. The control exhibits a good steady state performance and improves the dynamic response without any overshoot in the line current. Theoretical principles of the proposed method are discussed. Both simulation and experimental results are presented to verify the performance and effectiveness of this control scheme.

The Reduction of Common-Mode Voltage in Matrix Converter without Using Zero Space Vector (영상태 벡터를 사용하지 않는 매트릭스 컨버터의 공통모드 전압 저감에 관한 연구)

  • Nguyen, Minh-Hoang;Lee, Hong-Hee;Jung, Eui-Heon;Chun, Tae-Won;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.638-642
    • /
    • 2005
  • This paper proposes a modified space-vector pulse width modulation (PWM) strategy which can restrict the common-mode voltage for three-phase to three-phase matrix converter and still keep sinusoidal input and output waveforms and unity power factor at the input side. The proposed control method has been developed based on contributing the appropriate space vectors instead of using zero space vectors. The advantages of this proposed method is to reduce the peak value of common-mode voltage to 42% beside the lower high harmonic components as compared to the conventional SVM method. Hence, the new table is also presented with the new space vector rearrangement. Furthermore, the voltage transfer ratio is unaffected by the proposed method. A simulation of the overall system has been carried out to validate the advantages of the proposed method.

  • PDF

A Stipulation Based Sources Insertion Multilevel Inverter (SBSIMLI) for Waning the Component Count and Separate DC Sources

  • Edwin, Jose S;Titus, S
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1519-1528
    • /
    • 2017
  • The paper proposes a well structured, component count waned single phase multilevel inverter (MLI) topology, which drives three different modules viz. Stipulation Based Sources Insertion (SBSI) module, Level Count Increasing (LCI) module and Inter-Linking H-Bridge (ILHB) module. The SBSI module confronts the number of basic sources needed in series/parallel to achieve required magnitude for any particular level. The LCI possesses an offsetting dc source and opuses to increase the number of levels and the ILHB module links the SBSI and LCI modules. A developed Hybrid Pulse Width Modulation (HPWM) strategy has PWM pulses for the switches of LCI module while the switches of the remaining two modules function at fundamental switching frequency. A fifteen level version of the proposed stipulation based sources insertion MLI (SBSIMLI) topology is simulated in MATLAB R2010a and a prototype of the similar specifications is constructed to validate the performance by experimental results. The comparison between the developed SBSIMLI topology and the competent topologies shows many interesting facts.

Motor Drive System Analysis and Controller Design for Fuel cell Electronics Vehicle (연료전지 전기자동차 전력 구동시스템 분석 및 전동기 구동시스템 제어기 설계)

  • Lee, Myung-Jin;Park, In-Duck;Kim, Si-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.484-486
    • /
    • 2004
  • In this paper, the power electronics requirement and the controls of an induction motor for fuel cell electric vehicle system are presented. The power topology is selected based on performance, cost, size, volume, manufacturability, component count and simplicity. Another highlight of the topology is the reduction of battery bank and its control strategy. The proposed approach consists a full-bridge DC/DC converter to boost the fuel cell voltage. The induction motor operated with vector control is driven by a three-phase PWM inverter supplied by the DC-link voltage. The investigation of the electric vehicle performed due to parameter variation of the induction motor has been presented.

  • PDF