• Title/Summary/Keyword: Three-parameters controller

Search Result 129, Processing Time 0.029 seconds

Robust Internal Model Control of Three-Phase Active Power Filter for Stable Operation in Electric Power Equipment (전력설비의 안정한 운용을 위한 3상 능동전력필터의 강인한 내부모델제어)

  • Park, Ji-Ho;Kim, Dong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1487-1493
    • /
    • 2013
  • A new simple control method for active power filter, which can realize the complete compensation of harmonics is proposed. In the proposed scheme, a model-based digital current control strategy is presented. The proposed control system is designed and implemented in a form referred to as internal model control structure. This method provides a convenient way for parameterizing the controller in term of the nominal system model, including time-delays. As a result, the resulting controller parameters are directly set based on the power circuit parameters, which make tuning of the controllers straightforward task. In the proposed control algorithm, overshoots and oscillations due to the computation time delay is prevented by explicit incorporating of the delay in the controller transfer function. In addition, a new compensating current reference generator employing resonance model implemented by a DSP(Digital Signal Processor) is introduced. Resonance model has an infinite gain at resonant frequency, and it exhibits a band-pass filter. Consequently, the difference between the instantaneous load current and the output of this model is the current reference signal for the harmonic compensation.

Active Control of Clamped Beams using Acceleration Feedback Controllers (가속도 되먹임 제어기를 이용한 양단지지보의 능동 제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Jeong, Sang-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1190-1199
    • /
    • 2010
  • This paper reports active control of clamped beams using acceleration feedback controllers (AF). The equations of motion of clamped beam under force and moment pairs were derived and the equations of AF controllers were formulated. The effect of the parameters - gain and damping ratio - of the AF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the AF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies. The increase of the damping ratio of the AF controller leads to decrease the magnitude of the open loop transfer function and modifies its phase characteristics to be more stable. Three AF controllers connected in parallel were then proposed. Each AF controller is tuned at the 2nd, 3rd and 4th modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 3 modes can be obtained.

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.461-461
    • /
    • 2000
  • Nonlinear pulse width modulation(PWM) controlled system is considered to achieve control performance of thruster-controlled spacecraft. The actual PWM controlled motions occurs, very closely, around the average model rajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

Fuzzy-Neuro Controller for Control of Air-Conditioning System

  • Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 1995
  • A practical application of a fuzzy-neuro controller is described for an air-conditioning system. Air-handing units are being widely used for improving the performance of central air-conditioning systems. The fuzzy-neuro control system has two controlled variables, temperature and humidity and three control elements, cooling, heating, and humidification. In order to achieve high efficiency and economical contorl, especially in large offices and industrial buildings, two controllable parameters, temperature and humidity, must be adequately controlled by the three final controlling elements. In this paper a fuzzy-neuro control system is described for controlling air-conditioning systems efficiently and economically. Simulation results confirmed that the fuzzy neuro control system is effective for this multivariable system.

  • PDF

A Model-Based Tuning Rule of the PID Controller (PID 제어기의 모델기반 동조규칙)

  • 김도응;신명호;권봉재;유성호;박승수;진강규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.261-266
    • /
    • 2002
  • In this Paper, we Propose model-based tuning rules of the PID controller incorporating with genetic algorithms. Three sets of optimal PID parameters for step set-point tracking are obtained based on the first-order time delay model of plants and a genetic algorithm which minimizes performance indices(IAE, ISE and ITAE). Then tuning rules are obtained using the tuned parameter sets, potential rule models and a genetic algorithm. Simulation is carried out to verify the effectiveness of the proposed rules.

  • PDF

A Double Band Hysteresis Current Control Method (이중밴드 히스테리시스 전류 제어 방식)

  • Oh W.H.;Yoo C.H.;Shin E.C.;Park S.M.;Noh H.Y.;Yoo J.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.579-583
    • /
    • 2003
  • Hysteresis controllers are intrinsically robust to system parameters, exhibit very high dynamic response and are suitable for simple implementation. But the current control using a conventional hysteresis controller has the disadvantage that high switching frequency may happen due to lack of coordination among individual hysteresis controllers of three phases. This will of course increase the switching loss. In addition, the current error is not strictly limited. So, in this paper to reduce the switching frequency, a double band hysteresis current controller is proposed. The presented control system was tested with digital simulation in the Borland C++ program and demonstrate the advantage of proposed hysteresis current controller.

  • PDF

The Optimal Design of HFC by means of GAs (유전자 알고리즘을 이용한 HFC의 최적설계)

  • 이대근;오성권;장성환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.369-369
    • /
    • 2000
  • Control system by means of fuzzy theory has demonstrated its robustness in applying to the high-order and nonlinear dynamic system in that it can utilizes the human expert knowledges in system design. In this paper, first, the design methodology of HFC combined PID controller with fuzzy controller by membership function of weighting coefficient is proposed. Second, Second, an auto-tuning algorithms utilizing the simplified reasoning method and genetic algorithms is presented to improve the performance of hybrid fuzzy controller. Especially, in order to obtain the optimal scaling factors and PID parameters of HFC using GA based on advanced initial individual, three kinds of estimation modes such as basic, contraction, and expansion mode are effectively utilized. The proposed HFC is evaluated and discussed in ITAE, overshoot and rising time to show applicability and superiority with simulation results.

  • PDF

A Fuzzy-PI Control Scheme of the Three-Phase Z-Source PWM Rectifier without AC-Side Voltage and Current Sensors (교류측 전압 및 전류 센서가 없는 3상 Z-소스 PWM 정류기의 퍼지-PI 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.767-781
    • /
    • 2013
  • In this paper, we proposes the AC input voltage and current sensorless control scheme to control the input power factor and DC output voltage of the three-phase Z-source PWM rectifier. For DC-link voltage control which is sensitive to the system parameters of the PWM rectifier, fuzzy-PI controller is used. Because the AC input voltage and current are estimated using only the DC-link voltage and current, AC input voltage and current sensors are not required. In addition, the unity input power factor and DC output voltage can be controlled. The phase-angle of the detected AC input voltage and estimated voltage, the response characteristics of the DC output voltage according to the DC voltage references, the FFT results of the estimated voltage and current, efficiency, and the response characteristics of the conventional PI controller and fuzzy-PI controller are verified by PSIM simulation.

Improved Sliding Mode Controller for Shunt Active Power Filter

  • Sahara, Attia;Kessal, Abdelhalim;Rahmani, Lazhar;Gaubert, Jean-Paul
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.662-669
    • /
    • 2016
  • In this work, nonlinear control of a three-phase shunt active power filter (SAPF) has been studied and compared to classical control based on proportional integral regulator. The control strategy is based on the direct current method using sliding mode control (SMC), where the aim is to regulate the average voltage across the dc bus of the inverter. Details are given for the control algorithm; the controller is comprised of a current loop which utilizes a hysteresis controller to generate the gating signals for the switching devices, and a nonlinear controller based on SMC law which is different from classical laws based on error between reference and measured output voltage of the inverter. Sliding surface applied in this work contains the whole of state variables, in order to ensure full control of the system behavior in the presence of disturbances that affect the supply source, the load parameters or the reference value. The designed controller offers advantage that it can gives the improvement of dynamic and static performances in cases of large disturbances. A comparison of the effects of PI control and SMC on the APF response in steady stat, under line variations, load variations, and different component variations is performed.