• Title/Summary/Keyword: Three-dimensional printer

Search Result 122, Processing Time 0.031 seconds

Linear measurement evaluation according to UV-type ultrasonic cleaning of artificial teeth for temporary dentures manufactured using a light-curing type printer produced by a DLP printer (광중합형 프린터로 제작한 임시 의치용 인공치아의 UV형 초음파 세척에 따른 선형측정 평가)

  • Dong-Yeon Kim;Gwang-Young Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.8-14
    • /
    • 2024
  • Purpose: This study compares the deformation of traditional resin dentures to resin dentures printed with digital light processing (DLP). Methods: Eleven edentulous research models were developed. Ten of them were made with traditional resin dentures. The remaining one was prepared for scanning and 3D (three-dimensional) printing. Ten traditional resin dentures were made, with the remaining artificial teeth created using 3D software and a DLP printer. Traditional resin dentures, 3D printed resin denture artificial teeth, and a denture base with artificial teeth were all cleaned simultaneously in an ultrasonic cleaner for 3 minutes. Three groups were assigned four artificial tooth measurement points, which were then measured with digital calipers. The measured data was analyzed using descriptive statistics. The significance test was conducted using a nonparametric test Kruskal-Wallis test due to the small number of specimens (α=0.05). Results: The traditional resin dentures had the lowest strain rate at -0.04%, while the group that manufactured only artificial teeth had the highest strain rate at -0.09%. However, no statistically significant difference was observed between the 3 groups (p>0.05). Conclusion: During ultraviolet-type ultrasonic cleaning, traditional resin dentures (TD group) and denture base with artificial teeth made of DLP (DD group) demonstrated stable durability, whereas the artificial teeth made of DLP (AD group) with only artificial teeth did not show a good deformation rate.

Design and Fabrication of Tool Change Multi-nozzle FDM 3D Printer (툴 체인지 방식 멀티 노즐 3D프린터의 설계 및 제작)

  • Suk, Ik-hyun;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.38-44
    • /
    • 2021
  • To cater to the transition from single-color to multicolor/multi-material printing, this paper proposes a cartridge-replacing type multi-nozzle Fused Depositon Modeling(FDM) three-dimensional (3D) printer. In the test printing run, tool change failure/wobble/layer shift occurred. It was confirmed that improper support was the cause of this tool change failure. As a solution, spline and electromagnetic cartridges were designed. Wobble was caused by machine vibration and the motor stepping out. To minimize wobble, an additional Z-axis was installed, and the four-point bed leveling method was used instead of the three-point bed leveling method. The occurrence of layer shift was ascribed to the eccentricity of the Z-axis lead screw. Therefore, slit coupler was replaced with an Oldham type. In addition to the mechanical supplementation, the control environment was integrated to prevent accidents and signal errors due to wire connections. Before the final test printing run, a rectifier circuit was added to the motor to secure precise control stability. The final test printing run confirmed that the wobble/layer shift phenomenon was minimized, and the maximum error between layers was reduced to 0.05.

Evaluation of dimension stability according to UV-C ultrasonic cleaning of full arch artificial teeth made with DLP printer for photopolymerization (광중합용 DLP 프린터로 제작한 전악 인공치아의 UV-C 초음파 세척에 따른 체적 안정성 평가)

  • Kim, Dong-Yeon;Lee, Gwang-Young
    • Journal of Technologic Dentistry
    • /
    • v.43 no.3
    • /
    • pp.84-92
    • /
    • 2021
  • Purpose: The purpose of this study was to compare the dimension safety evaluation between a general ultrasonic cleaner and an ultrasonic cleaner equipped with UV-C (ultraviolet-C). Methods: An edentulous model was prepared. A denture base and an occlusal rim were fabricated, and scanning was performed. After scanning, a denture base and full arch artificial teeth were designed. The full arch artificial teeth were printed using a three-dimensional printer (n=10). The residual resin was washed with alcohol and then scanned (reference data). The printed specimens were classified and cleaned using a general ultrasonic cleaner (GU group) and an ultrasonic cleaner equipped with UV-C (UC group). After each washing, a rescan was performed (scan data). Reference data and scan data were superimposed using overlapping software. Data were statistically analyzed using the Mann-Whitney test (α=0.05). Results: In the deviation values of full arch artificial teeth, the GU group showed a high deviation of 18.02 ㎛ and the UC group showed a low deviation of 15.02 ㎛. The two groups demonstrated a statistically significant difference (p<0.05). Conclusion: Full arch artificial teeth prepared using photopolymerized resin were deformed according to the temperature of water generated in the ultrasonic cleaner. It is judged that there is no deformation according to the UV-C ultrasonic cleaner.

Evaluation of flexural properties and reliability with photo-curing 3D printing resin according to the printing orientations (광경화성 3D 프린팅 레진의 출력각도에 따른 굽힘 특성과 신뢰성 평가)

  • Im, Yong-Woon;Song, Doo-Bin;Hwang, Seong-Sig;Kim, Sa-Hak;Han, Man-So
    • Journal of Technologic Dentistry
    • /
    • v.43 no.1
    • /
    • pp.13-18
    • /
    • 2021
  • Purpose: This study aimed to compare the flexural properties and perform the Weibull analysis of photo-curing three-dimensional (3D) printing resin. Methods: Photo-curing temporary resin (3D polymer) was used as a printing resin. Specimens (65 × 10 × 3.3 ㎣) were prepared following the ISO 20975-1 guidelines and according to the different printing orientations using a digital light processing 3D printer (D2 120; Dentium). The flexural strength (FS), flexural modulus, and work of fracture (WOF) were measured using a universal testing machine (Instron 3344; Instron) at a crosshead speed of 5 mm/min. Results: In this study, the 0° orientation exhibited higher FS and WOF than the 45° orientation. Significant differences were found among the printing orientations (p<0.05). Specimens printed at the 0° orientation were the most accurate. In the Weibull analysis, 0° showed the greatest Weibull modulus (m), which represents a higher reliability. Conclusion: 3D printing should be selected and used by considering flexural properties, size accuracy, and reliability.

A study of correction dependent on process parameters for printing on 3D surface (3 차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구)

  • Song M.S.;Kim H.C.;Lee S.H.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.749-752
    • /
    • 2005
  • In the industry, three-dimensional coloring has been needed for realistic prototype from rapid prototyping. Z-corporation developed a 3D printer which provides three-dimensional colored prototype. However, the existing process cannot be adopted to models from other rapid prototyping process. In addition, time and cost for manufacturing colored prototype still remain to be improved. In this study, a new coloring process using ink-jet head is proposed for color printing on three-dimensional prototype surface. Process parameters such as the angle and the distance between ink-jet nozzle and the three-dimensional surface should be investigated from experiments. The correction matrix according to sloped angle to minimize the distortion of 2D image was proposed by analysis of printing error. Therefore, approximated method for angle and discrete length according to the radius of curvature for printing on the curved surface was proposed. By printing image on the doubly curved surface, the method was verified. As a practical example, helmet was chosen for printing images on the curved surface. The character images were applied with approximated method for angle and discrete length and was printed on the helmet surface.

  • PDF

Feasibility study on developing productivity and quality improved three dimensional printing process

  • Lee, Won-Hee;Kim, Dong-Soo;Lee, Taik-Min;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2160-2163
    • /
    • 2005
  • Solid freeform fabrication (SFF) technology plays a major role in industry and represents a reasonable percentage of industrial rapid prototyping/tooling/manufacturing (RP/RT/RM) development applications. However, SFF technology still has long way to progress to achieve satisfactory process speed, surface finish and overall quality improvement of its application. Today, three dimensional printing (3DP) technique that is one of SFF technology is receiving many interests, and is applied by various fields. It can fabricate three dimensional objects of solid freeform with high speed and low cost using ink jet printing technology. However, need long curing time after manufacture completion. And it must do post-processing process necessarily to heighten strength of objects because strength of fabricated objects is very weak. Therefore, in this study, we proposed an improved 3DP process that can solve problems of conventional 3DP process. The general 3DP process is method to spout binder simply through printer head on powder, but proposed process is method to cure jetted UV resin by UV lamp after jet UV resin using printhead on powder. The hardening of resin is achieved strongly at early time by UV lamp in proposed method. So, the proposed process can fabricate three dimensional objects with high speed without any post-processing.

  • PDF

Nasoethmoid orbital fracture reconstruction using a three-dimensional printing-based craniofacial plate

  • Hyun Ki, Hong;Do Gon, Kim;Dong Hun, Choi;Anna, Seo;Ho Yun, Chung
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.6
    • /
    • pp.278-281
    • /
    • 2022
  • The face is one of the most important parts of the body. Untreated facial fractures can result in deformities that can be harmful to patients. Three-dimensional (3D) printing is a rapidly evolving technology that has recently been widely applied in the medical field as it can potentially improve patient treatment. Although 3D printing technology is mostly used for craniofacial surgery, some studies have proved that it can be used to treat nasoethmoid orbital fractures. In this study, a patient-customized plate was constructed using a 3D printer and applied in a simulated surgery for the treatment of nasoethmoid orbital fracture.

A Study on Development of Three-Dimensional Chocolate Printer (초콜릿 소재의 3차원 프린터 개발에 관한 연구)

  • Kim, Kyu Eon;Park, Keun;Lee, Chibum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.293-298
    • /
    • 2017
  • In this study, we developed a 3D chocolate printer and studied the conditions needed for chocolate printing. Because chocolate is a mixture of cocoa mass, cocoa butter and sugar particles, its properties vary with temperature, and care is required in melting and extrusion. A chocolate supply unit is composed of a heating block and a syringe pump. It is integrated with a 3-axis linear robot. In order to be more accurate than the existing 3D chocolate printer is, the system was configured so that the printing line width became $430{\mu}m$. Printing performance was studied according to various parameters. The condition needed for printing lines with a stable width was discovered by the experimental design method and has been confirmed by a 2D line test. These 3D printing experiments showed that it was possible to build a 3D shape with an inclination angle of up to $45^{\circ}$ without support. Further, chocolate printing of a 3D shape has been successfully verified with the developed system.

Development of a Metal 3D Printer Using Laser Powder Deposition and Process Optimization for Fabricating Titanium Alloy Parts (레이저 분말적층 방식을 이용한 금속 3D 프린터 개발 및 티타늄 합금 부품 제조공정 최적화)

  • Jeong, Wonjong;Kwon, Young-Sam;kim, Dongsik
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • A 3D printer based on laser powder deposition (LPD), also known as DED (direct energy deposition), has been developed for fabricating metal parts. The printer uses a ytterbium fiber laser (1070nm, 1kW) and is equipped with an Ar purge chamber, a three-dimensional translation stage and a powder feeding system composed of a powder chamber and delivery nozzles. To demonstrate the performance of the printer, a tapered cylinder of 320mm in height has been fabricated successfully using Ti-6Al-4V powders. The process parameters including the laser output power, the scan speed, and the powder feeding rate have been optimized. A 3D printed test specimen shows mechanical properties (yield strength, ultimate tensile strength, and elongation) exceeding the criteria to employed in a variety of Ti alloy applications.

3D Printing Design for Minimizing Flection Phenomenon (3D 프린팅 휘어짐 현상 최소화를 위한 설계)

  • Choi, Seong-Ook;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1415-1420
    • /
    • 2014
  • 3D printer is based on an additive manufacturing technology, which helps in creating the three-dimensional object using a 3D drawing. It is used in various fields, because it prints out a variety of three-dimensional products in a short period of time. In this paper, we consider a technique using the FDM(Fused Deposition Modeling) method by dissolving the ABS(Acrylonitrile Butadiene Styrene) resin among a diversity of printing technique and materials. This kind of the 3D printer prints out a product in high temperature and cools down it. In this process, a flection phenomenon is occurred according to the size of the printing product and the surrounding environment. Conventional methods for mitigating this phenomenon maintain the temperature at the optimum level, but they require using additional devices. In order to minimize the flection phenomenon in 3D printing products without additional devices, in this paper, we propose a noble technique, which creates holes on suitable positions when they are designed by 3D drawing tools. Also, we suggest mathematical model for the proposed method, and measure and analyse a printing output using a proposed technique.