• Title/Summary/Keyword: Three-dimensional elasticity theory

Search Result 81, Processing Time 0.02 seconds

A refined theory with stretching effect for the flexure analysis of laminated composite plates

  • Draiche, Kada;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.671-690
    • /
    • 2016
  • This work presents a static flexure analysis of laminated composite plates by utilizing a higher order shear deformation theory in which the stretching effect is incorporated. The axial displacement field utilizes sinusoidal function in terms of thickness coordinate to consider the transverse shear deformation influence. The cosine function in thickness coordinate is employed in transverse displacement to introduce the influence of transverse normal strain. The highlight of the present method is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\neq}0$), the displacement field is constructed with only 5 unknowns, as against 6 or more in other higher order shear and normal deformation theory. Governing equations of the present theory are determined by employing the principle of virtual work. The closed-form solutions of simply supported cross-ply and angle-ply laminated composite plates have been obtained using Navier solution. The numerical results of present method are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy, higher order shear and normal deformation theory (HSNDT) and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory. It can be concluded that the proposed method is accurate and simple in solving the static bending response of laminated composite plates.

Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.867-891
    • /
    • 2014
  • An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is presented for static flexure of cross-ply laminated composite and sandwich plates. The inplane displacement field uses sinusoidal function in terms of thickness coordinate to include the transverse shear deformation effect. The cosine function in thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term (involving thickness coordinate z) is expanded in power series, the kinematics of higher order theories (which are usually obtained by power series in thickness coordinate z) are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The closed-form solutions of simply supported cross-ply laminated composite and sandwich plates have been obtained. The results of present theory are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory.

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.

Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory

  • Huo, Ruili;Liu, Weiqing;Wu, Peng;Zhou, Ding
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.127-139
    • /
    • 2017
  • In this paper, an exact analytical solution for simply supported sandwich plate which considers the permeation effect of adhesives is presented. The permeation layer is described as functionally graded material (FGM), the elastic modulus of which is assumed to be graded along the thickness following the exponential law. Based on the exact three-dimensional (3-D) elasticity theory, the solution of stresses and displacements for each layer is derived. By means of the recursive matrix method, the solution can be efficiently obtained for plates with many layers. The present solution obtained can be used as a benchmark to access other simplified solutions. The comparison study indicates that the finite element (FE) solution is close to the present one when the FGM layer in the FE model is divided into a series of homogeneous layers. However, the present method is more efficient than the FE method, with which the mesh division and computation are time-consuming. Moreover, the solution based on Kirchhoff-Love plate theory is greatly different from the present solution for thick plates. The influence of the thickness of the permeation layer on the stress and displacement fields of the sandwich plate is discussed in detail. It is indicated that the permeation layer can effectively relieve the discontinuity stress at the interface.

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

Three-dimensional Vibration Analysis of Thick, Complete Conical Shells of Revolution (두꺼운 완전 원추형 회전셸의 3차원적 진동해석)

  • Sim Hyun-Ju;Kang Jae-Goon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.457-464
    • /
    • 2005
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution, Unlike conventional shell theories, which are mathematically two-dimensional (2-D). the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_{r},\;u_{z},\;and\;u_{\theta}$ in the radial, axial, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the conical shells are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of theconical shells. Novel numerical results are presented for thick, complete conical shells of revolution based upon the 3-D theory. Comparisons are also made between the frequencies from the present 3-D Ritz method and a 2-D thin shell theory.

Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.275-290
    • /
    • 2018
  • The hygrothermal stresses in sandwich plate with composite faces due to through the thickness gradient temperature and (or) moisture content are investigated. The layer-wise theory is employed for formulation of the problem. The formulation is derived for sandwich plate with general layer stacking, subjected to uniform and non-uniform temperature and moisture content through the thickness of the plate. The governing equations are solved for free edge conditions and 3D stresses are investigated. The out of plane stresses are obtained by equilibrium equations of elasticity and by the constitutive law and the results for especial case are compared with the predictions of a 3D finite element solution in order to study the accuracy of results. The three-dimensional stresses especially the free edge effect on the distribution of the stresses is studied in various sandwich plates and the effect of uniform and non-uniform thermal and hygroscopic loading is investigated.

GENERALIZED THERMO ELASTIC WAVES IN A CYLINDRICAL PANEL EMBEDDED ON ELASTIC MEDIUM

  • Ponnusamy, P.;Selvamani, R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2013
  • In this paper the three dimensional wave propagation in a homogeneous isotropic thermo elastic cylindrical panel embedded in an elastic medium (Winkler model) is investigated in the context of the L-S (Lord-Shulman) theory of generalized thermo elasticity. The analysis is carried out by introducing three displacement functions so that the equations of motion are uncoupled and simplified. A Bessel function solution with complex arguments is then directly used for the case of complex Eigen values. This type of study is important for design of structures in atomic reactors, steam turbines, wave loading on submarine, the impact loading due to superfast train and jets and other devices operating at elevated temperature. In order to illustrate theoretical development, numerical solutions are obtained and presented graphically for a zinc material with the support of MATLAB.

Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets

  • Xi, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.65-79
    • /
    • 2022
  • The main goal of this paper is to study the vibration of damaged core laminated annular plates with FG face sheets based on a three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. In this study the effect of microcracks on the vibrational characteristic of the sandwich plate is considered. In particular, the structures are made by an isotropic core that undergoes a progressive uniform damage, which is modeled as a decay of the mechanical properties expressed in terms of engineering constants. These defects are uniformly distributed and affect the central layer of the plates independently from the direction, this phenomenon is known as "isotropic damage" and it is fully described by a scalar parameter. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular plate is assumed to have any arbitrary boundary conditions at the circular edges including simply supported, clamped and, free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution, and boundary conditions.

Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron

  • Yaylaci, Murat;Yayli, Mujgen;Yaylaci, Ecren Uzun;Olmez, Hasan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.585-597
    • /
    • 2021
  • This paper presents a comparative study of analytical method, finite element method (FEM) and Multilayer Perceptron (MLP) for analysis of a contact problem. The problem consists of a functionally graded (FG) layer resting on a half plane and pressed with distributed load from the top. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. The problem is reduced a system of integral equation in which the contact pressure are unknown functions. The numerical solution of the integral equation was carried out with Gauss-Jacobi integration formulation. Secondly, finite element model of the problem is constituted using ANSYS software and the two-dimensional analysis of the problem is carried out. The results show that contact areas and the contact stresses obtained from FEM provide boundary conditions of the problem as well as analytical results. Thirdly, the contact problem has been extended based on the MLP. The MLP with three-layer was used to calculate the contact distances. Material properties and loading states were created by giving examples of different values were used at the training and test stages of MLP. Program code was rewritten in C++. As a result, average deviation values such as 0.375 and 1.465 was obtained for FEM and MLP respectively. The contact areas and contact stresses obtained from FEM and MLP are very close to results obtained from analytical method. Finally, this study provides evidence that there is a good agreement between three methods and the stiffness parameters has an important effect on the contact stresses and contact areas.