• Title/Summary/Keyword: Three-dimensional computed tomography (3D CT)

Search Result 151, Processing Time 0.027 seconds

A Post Smoothing Algorithm for Vessel Segmentation

  • Li, Jiangtao;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.345-346
    • /
    • 2009
  • The segmentation of vessel including portal vein, hepatic vein and artery, from Computed Tomography (CT) images plays an important role in the therapeutic strategies for hepatic diseases. Representing segmented vessels in three dimensional spaces is extremely useful for doctors to plan liver surgery. In this paper, proposed method is focused on smoothing technique of segmented 3D liver vessels, which derived from 3D region growing approach. A pixel expand algorithm has been developed first to avoid vessel lose and disconnection cased by the next smoothing technique. And then a binary volume filtering technique has been implemented and applied to make the segmented binary vessel volume qualitatively smoother. This strategy uses an iterative relaxation process to extract isosurfaces from binary volumes while retaining anatomical structure and important features in the volume. Hard and irregular place in volume image has been eliminated as shown in the result part, which also demonstrated that proposed method is a suitable smoothing solution for post processing of fine vessel segmentation.

Validation of a low-cost portable 3-dimensional face scanner

  • Liu, Catherine;Artopoulos, Andreas
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • Purpose: The goal of this study was to assess the accuracy and reliability of a low-cost portable scanner (Scanify) for imaging facial casts compared to a previously validated portable digital stereophotogrammetry device (Vectra H1). This in vitro study was performed using 2 facial casts obtained by recording impressions of the authors, at King's College London Academic Centre of Reconstructive Science. Materials and Methods: The casts were marked with anthropometric landmarks, then digitised using Scanify and Vectra H1. Computed tomography (CT) scans of the same casts were performed to verify the validation of Vectra H1. The 3-dimensional (3D) images acquired with each device were compared using linear measurements and 3D surface analysis software. Results: Overall, 91% of the linear Scanify measurements were within 1 mm of the corresponding reference values. The mean overall surface difference between the Scanify and Vectra images was <0.3mm. Significant differences were detected in depth measurements. Merging multiple Scanify images produced significantly greater registration error. Conclusion: Scanify is a very low-cost device that could have clinical applications for facial imaging if imaging errors could be corrected by a future software update or hardware revision.

Comparison of asymmetric degree between maxillofacial hard and soft tissue in facial asymmetric subjects using three-dimensional computed tomography (안면비대칭자의 3차원 전산단층사진 분석에서 경$\cdot$연조직간 비대칭 정도 차이)

  • Kim, Wang-Sik;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.35 no.3 s.110
    • /
    • pp.163-173
    • /
    • 2005
  • The purpose of this study was to compare the asymmetric degree between maxillofacial hard and soft tissues in individuals with facial asymmetry. Computerized tomographies (CT) of 34 adults (17 male, 17 female) who had facial asymmetry were taken. The CT images were transmitted to personal computers and then reconstructed into three-dimensional (3D) images through the use of computer software. In order to evaluate the degree of facial asymmetry, 6 measurements were constructed as the hard tissue measurements while 6 counterpart measurements were taken as the soft tissue measurements. The means and standard deviations were obtained for each measurement using 3D measure, then t-test was used to investigate the differences between each hard tissue measurement and the corresponding soft tissue measurement All measurements used in the present study showed statistically significant differences between the hard and soft tissues. The degree of soft tissue asymmetry was smaller than that of corresponding hard tissue asymmetry in case of chin deviation, frontal ramal inclination difference, and frontal corpus inclination difference. On the other hand, the degree of soft tissue asymmetry was greater than that of underlying hard tissue asymmetry in the measurement of lip canting and lip cheilion height difference The present study suggests that asymmetric differences of hard and soft tissue is observed nu facial asymmetric subjects and thus soft tissue analysis is needed in addition to hard tissue analysis when making an evaluation of facial asymmetry.

Cervical spine reconstruction after total vertebrectomy using customized three-dimensional-printed implants in dogs

  • Ji-Won Jeon;Kyu-Won Kang;Woo-Keyoung Kim;Sook Yang;Byung-Jae Kang
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.2.1-2.14
    • /
    • 2024
  • Background: Sufficient surgical resection is necessary for effective tumor control, but is usually limited for vertebral tumors, especially in the cervical spine in small animal neurosurgery. Objective: To evaluate the primary stability and safety of customized three-dimensional (3D)-printed implants for cervical spine reconstruction after total vertebrectomy. Methods: Customized guides and implants were designed based on computed tomography (CT) imaging of five beagle cadavers and were 3D-printed. They were used to reconstruct C5 after total vertebrectomy. Postoperative CT images were obtained to evaluate the safety and accuracy of screw positioning. After harvesting 10 vertebral specimens (C3-C7) from intact (group A) and implanted spines (group B), implant stability was analyzed using a 4-point bending test comparing with groups A and C (reconstituted with plate and pins/polymethylmethacrylate after testing in Group A). Results: All customized implants were applied without gross neurovascular damage. In addition, 90% of the screws were in a safe area, with 7.5% in grade 1 (< 1.3 mm) and 2.5% in grade 2 (> 1.3 mm). The mean entry point and angular deviations were 0.81 ± 0.43 mm and 6.50 ± 5.11°, respectively. Groups B and C significantly decreased the range of motion (ROM) in C3-C7 compared with intact spines (p = 0.033, and 0.018). Both groups reduced overall ROM and neutral zone in C4-C6, but only group B showed significance (p = 0.005, and 0.027). Conclusion: Customized 3D-printed implants could safely and accurately replace a cervical vertebra in dog cadavers while providing primary stability.

Three-Dimensional Printed Model of Partial Anomalous Pulmonary Venous Return with Biatrial Connection (양측 심방 연결을 형성하는 부분 폐정맥 환류 이상의 3D 프린팅 모델)

  • Myoung Kyoung Kim;Sung Mok Kim;Eun Kyoung Kim;Sung-A Chang;Tae-Gook Jun;Yeon Hyeon Choe
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1523-1528
    • /
    • 2020
  • Partial anomalous pulmonary venous return (PAPVR) is a rare congenital cardiac anomaly that can be difficult to detect and often remains undiagnosed. PAPVR is diagnosed using non-invasive imaging techniques such as echocardiography, CT, and MRI. Image data are reviewed on a 2-dimensional (D) monitor, which may not facilitate a good understanding of the complex 3D heart structure. In recent years, 3D printing technology, which allows the creation of physical cardiac models using source image datasets obtained from cardiac CT or MRI, has been increasingly used in the medical field. We report a case involving a 3D-printed model of PAPVR with a biatrial connection. This model demonstrated separate drainages of the right upper and middle pulmonary veins into the lower superior vena cava (SVC) and the junction between the SVC and the right atrium, respectively, with biatrial communication through the right middle pulmonary vein.

Influence of the Alveolar Cleft Type on Preoperative Estimation Using 3D CT Assessment for Alveolar Cleft

  • Choi, Hang Suk;Choi, Hyun Gon;Kim, Soon Heum;Park, Hyung Jun;Shin, Dong Hyeok;Jo, Dong In;Kim, Cheol Keun;Uhm, Ki Il
    • Archives of Plastic Surgery
    • /
    • v.39 no.5
    • /
    • pp.477-482
    • /
    • 2012
  • Background The bone graft for the alveolar cleft has been accepted as one of the essential treatments for cleft lip patients. Precise preoperative measurement of the architecture and size of the bone defect in alveolar cleft has been considered helpful for increasing the success rate of bone grafting because those features may vary with the cleft type. Recently, some studies have reported on the usefulness of three-dimensional (3D) computed tomography (CT) assessment of alveolar bone defect; however, no study on the possible implication of the cleft type on the difference between the presumed and actual value has been conducted yet. We aimed to evaluate the clinical predictability of such measurement using 3D CT assessment according to the cleft type. Methods The study consisted of 47 pediatric patients. The subjects were divided according to the cleft type. CT was performed before the graft operation and assessed using image analysis software. The statistical significance of the difference between the preoperative estimation and intraoperative measurement was analyzed. Results The difference between the preoperative and intraoperative values were $-0.1{\pm}0.3cm^3$ (P=0.084). There was no significant intergroup difference, but the groups with a cleft palate showed a significant difference of $-0.2{\pm}0.3cm^3$ (P<0.05). Conclusions Assessment of the alveolar cleft volume using 3D CT scan data and image analysis software can help in selecting the optimal graft procedure and extracting the correct volume of cancellous bone for grafting. Considering the cleft type, it would be helpful to extract an additional volume of $0.2cm^3$ in the presence of a cleft palate.

Morphometric analysis of bone in the ovariectomized rat using in vivo micro-CT (In vivo micro-CT를 이용한 난소적출 백서의 골구조 형태계측학적 분석)

  • Lee, Chang-Jin;Lee, Wan;Lee, Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.29-37
    • /
    • 2008
  • Purpose: The aim of this study was to observe the bony change in the OVX rat longitudinally and to study the alendronate effect. Materials and Methods: Eighteen Sprague-Dewley rats, eight-week old each, were randomly assigned into three groups: one of those sham-operated (N=4), the other two were OVX: saline-treated (N=7) and alendronate-treated group (N=7). The saline-treated group was administered with saline solution (0.1mL/100g) daily, while the alendronate-treated group was given alendronate (1mg/kg, Sigma-Aldrich Corp. Korea) daily. Micro-CT scannings of the lumbar were consecutively done at baseline, at 3-week intervals during 9 weeks. Two and three dimensional bony analysis were done. Bone mineral density (BMD) was measured with Piximus (GE Lunar Co. USA). The average values of these three methods were compared with each group. Results: After 6 weeks the BMD of the OVX group showed lower tendency than that of sham group. After 6 weeks many 3D parameters of micro-CT showed higher values in the OVX-alendronate group compared with the OVXsaline group. Most 2D bony parameters were higher in the OVX-alendronate group compared with the OVX-saline group at 9 weeks. Conclusion: This study showed low BMD of the OVX group after 6 weeks and showed the effect of alendronate on the BMD and bony structures of ovariectomized rats. This study also showed usefulness of in vivo micro-CT in monitoring individual bone changes over time.

  • PDF

Minimizing the extra-oral time in autogeneous tooth transplantation: use of computer-aided rapid prototyping (CARP) as a duplicate model tooth

  • Lee, Seung-Jong;Kim, Eui-Seong
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • Objectives: The maintenance of the healthy periodontal ligament cells of the root surface of donor tooth and intimate surface contact between the donor tooth and the recipient bone are the key factors for successful tooth transplantation. In order to achieve these purposes, a duplicated donor tooth model can be utilized to reduce the extra-oral time using the computer-aided rapid prototyping (CARP) technique. Materials and Methods: Briefly, a three-dimensional digital imaging and communication in medicine (DICOM) image with the real dimensions of the donor tooth was obtained from a computed tomography (CT), and a life-sized resin tooth model was fabricated. Dimensional errors between real tooth, 3D CT image model and CARP model were calculated. And extra-oral time was recorded during the autotransplantation of the teeth. Results: The average extra-oral time was 7 min 25 sec with the range of immediate to 25 min in cases which extra-oral root canal treatments were not performed while it was 9 min 15 sec when extra-oral root canal treatments were performed. The average radiographic distance between the root surface and the alveolar bone was 1.17 mm and 1.35 mm at mesial cervix and apex; they were 0.98 mm and 1.26 mm at the distal cervix and apex. When the dimensional errors between real tooth, 3D CT image model and CARP model were measured in cadavers, the average of absolute error was 0.291 mm between real teeth and CARP model. Conclusions: These data indicate that CARP may be of value in minimizing the extra-oral time and the gap between the donor tooth and the recipient alveolar bone in tooth transplantation.

Geometric Evaluation of Patient-Specific 3D Bolus from 3D Printed Mold and Casting Method for Radiation Therapy

  • An, Hyun Joon;Kim, Myeong Soo;Kim, Jiseong;Son, Jaeman;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.32-38
    • /
    • 2019
  • Purpose: The objective of this study is to evaluate the geometrical accuracy of a patient-specific bolus based on a three-dimensional (3D) printed mold and casting method. Materials and Methods: Three breast cancer patients undergoing treatment for a superficial region were scanned using computed tomography (CT) and a designed bolus structure through a treatment planning system (TPS). For the fabrication of patient-specific bolus, we cast harmless certified silicone into 3D printed molds. The produced bolus was also imaged using CT under the same conditions as the patient CT to acquire its geometrical shape. We compared the shapes of the produced bolus with the planned bolus structure from the TPS by measuring the average distance between two structures after a surface registration. Results and Conclusions: The result of the average difference in distance was within 1 mm and, as the worst case, the absolute difference did not exceed ${\pm}2mm$. The result of the geometric difference in the cross-section profile of each bolus was approximately 1 mm, which is a similar property of the average difference in distance. This discrepancy was negligible in affecting the dose reduction. The proposed fabrication of patient-specific bolus is useful for radiation therapy in the treatment of superficial regions, particularly those with an irregular shape.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.