• Title/Summary/Keyword: Three-dimensional Treatment Planning

Search Result 121, Processing Time 0.021 seconds

Three-Dimensional Dose Distribution for the System of Linear Accelerator-based Stereotactic Radiosurgery (LINAC을 이용한 뇌정위적 방사선 수술에 대한 3 차원 선량분포)

  • Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.121-128
    • /
    • 1991
  • Radiosurgery treatment in the brain requires detailed information on three-dimensional dose distribution. A three-dimensional treatment planning is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. Three-dimensional dose models for non-coplanar moving arcs were developed using measured single beam data and efficient 3-D dose algorithms for circular fields. The implementation of three dimensional dose algorithms with stereotactic radiosurgery and the application of the algorithms to several cases are discussed.

  • PDF

Intensity-modulated radiation therapy: a review with a physics perspective

  • Cho, Byungchul
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

The Determination of Optimum Beam Position and Size in Radiation Treatment (방사선치료시 최적의 빔 위치와 크기 결정)

  • 박정훈;서태석;최보영;이형구;신경섭
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • New method about the dose optimization problem in radiation treatment was researched. Since all conditions are more complex and there are more relevant variables, the solution of three-dimensional treatment planning is much more complicate than that of current two-dimensional one. There(ore, in this study, as a method to solve three-dimensional dose optimization problem, the considered variables was minized and researched by reducing the domain that solutions can exist and pre-determining the important beam parameters. First, the dangerous beam range that passes critical organ was found by coordinate transformation between linear accelerator coordinate and patient coordinate. And the beam size and rotation angle for rectangular collimator that conform tumor at arbitrary beam position was also determined. As a result, the available beam position could be reduced and the dependency on beam size and rotation angle, that is very important parameter in treatment planning, totally removed. Therefore, the resultant combinations of relevant variables could be greatly reduced and the dose optimization by objective function can be done with minimum variables. From the above results, the dose optimization problem was solved for the two-dimensional radiation treatment planning useful in clinic. The objective function was made by combination of dose gradient, critical organ dose and dose homogeniety. And the optimum variables were determined by applying step search method to objective function. From the dose distributions by optimum variables, the merit of new dose optimization method was verified and it can be implemented on commercial radiation treatment planning system with further research.

  • PDF

3차원 두부방사선 규격사진 구현시 컴퓨터를 이용한 두부위치의 보정방법에 관한 연구

  • Choy, Kwang-Chul;Kim, Kyung-Ho;Kim, In-Dal
    • The Journal of the Korean dental association
    • /
    • v.36 no.2 s.345
    • /
    • pp.135-143
    • /
    • 1998
  • Cephalogram is one of the most important tool in researching growth and development of craniofacial area, orthodontic diagnosis and treatment planning. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. three dimensional high quality images can be obtained using computerized tomogram and have reported in literatures. Considering its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. construction of three dimensional image using principle of orientator can be obtained by biplanar stereoradiography. Theoretically two images, lateral and P-A can be used to construct three dimensional image provided that those are taken at same time by two different focal spots. As two images(lateral and P-A) obtained by conventional cephalogram have different head posture, those need compensation to construct three dimensional images. This study introduced principle of computerized head posture compensation and showed that conventional cephalogram could be used to construct three dimensional image and could be applied to routine orthodontic practice.

  • PDF

Intensity Modulation in Radiation Therapy (선량강도 조절법을 이용한 방사선치료)

  • 김성규;김명세
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.27-34
    • /
    • 1997
  • In radiation therapy, the goal of three dimensional conformal radiation therapy(3DCRT) is to conform the apatial distribution of the prescribed radiation dose to the precise 3D configuration of the tomor, and at the same time, to minimize the dose to the surrounding normal tissues. To optimize treatment volume of tomor, treatment volume will be same tomor volume. Biological considerations need to be incorporated in the intensity modulation optimization process. Planning of intensity modulated treatment can irradiate more 20% in tomor compare to conventional 3DCRT. In lung cancer and rectal cancer, planning of intensity modulated treatment showed optimizing dose distribution.

  • PDF

A Study for Optimal Dose Planning in Stereotactic Radiosurgery

  • Suh, Tae-suk
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 1990
  • In order to explane the stereotactic procedure, the three steps of the procedure (target localization, dose planning, and radiation treatment) must be examined separately. The ultimate accuracy of the full procedure is dependent on each of these steps and on the consistancy of the approach The concern in this article was about dose planning, which is a important factor to the success of radiation treatment. The major factor in dose planning is a dosimetry system to evaluate the dose delivered to the target and normal tissues in the patient, while it generates an optimal dose distribution that will satisfy a set of clinical criteria for the patient. A three-dimensional treatment planning program is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. The major problems and possible modelings about 3-D factors and optimization technique were discussed to simplify and solve the problems associatied with 3-D optimization, with relative ease and efficiency. These modification can simplify the optimization problem while saving time, and can be used to develop reference dose planning system to prepare standard guideline for the selection of optimum beam parameters, such as the target position, collimator size, arc spacing, the variation in arc length and weight. The method yields good results which can then be simulated and tailored to the individual case. The procedure needed for dose planning in stereotactic radiosurgery is shown in figure 1.

  • PDF

Dosimetry and Three Dimensional Planning for Stereotactic Radiosurgery with SIEMENS 6-MV LINAC (6-MV선형가속기를 이용한 입체방사선수술의 선량측정 및 3차원적 치료계획)

  • Choi Dong-Rak;Cho Byong Chul;Suh Tae-Suk;Chung Su Mi;Choi Il Bong;Shinn Kyung Sub
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.175-181
    • /
    • 1993
  • Radiosurgery requires integral procedure where special devices and computer systems are needed for localization, dose planning and treatment. The aim of this work is to verify the overall mechanical accuracy of our LINAC and develop dose calculation algorithm for LINAC radiosurgery. The alignment of treatment machine and the performance testing of the entire system were extensively carried out and the basic data such as percent depth dose, off-axis ratio and output factor were measured. A three dimensional treatment planning system for stereotactic radiosurgery has been developed. We used an IBM personal computer with C programming language (IBM personal system/2, Model 80386, IBM Co., USA) for calculating the dose distribution. As a result, deviations at isocenter on gantry and table rotation for our treatment machine were acceptable since they were less than 2 mm. According to the phantom experiments, the focusing isocenter were successful by the error of less than 2 mm. Finally, the mechanical accuracy of our three dimensional planning system was confirmed by film dosimetry in sphere phantom.

  • PDF

Treatment Planning in Smart Medical: A Sustainable Strategy

  • Hao, Fei;Park, Doo-Soon;Woo, Sang Yeon;Min, Se Dong;Park, Sewon
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.711-723
    • /
    • 2016
  • With the rapid development of both ubiquitous computing and the mobile internet, big data technology is gradually penetrating into various applications, such as smart traffic, smart city, and smart medical. In particular, smart medical, which is one core part of a smart city, is changing the medical structure. Specifically, it is improving treatment planning for various diseases. Since multiple treatment plans generated from smart medical have their own unique treatment costs, pollution effects, side-effects for patients, and so on, determining a sustainable strategy for treatment planning is becoming very critical in smart medical. From the sustainable point of view, this paper first presents a three-dimensional evaluation model for representing the raw medical data and then proposes a sustainable strategy for treatment planning based on the representation model. Finally, a case study on treatment planning for the group of "computer autism" patients is then presented for demonstrating the feasibility and usability of the proposed strategy.

DEVELOPMENT OF THREE DIMENSIONAL MEASURING PROGRAM WITH FRONTAL AND LATERAL CEPHALOMETRIC RADIOGRAPHS -PART 2. 3-D VISUALIZATION AND MEASURMENT PROGRAM FOR MAXILLOFACIAL STRUCTURE- (정모 및 측모 두부 방사선 규격사진을 이용한 3차원 계측 프로그램의 개발 -2. 악안면 구조에 대한 3차원적 시각화 및 측정프로그램 개발-)

  • Lee, Sang-Han;Mori, Yoshihide;Minami, Katsuhiro;Lee, Geun-Ho;Kwon, Tae-Geon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.4
    • /
    • pp.321-329
    • /
    • 2001
  • To establish systematic diagnosis and treatment planning of dentofacial deformity patient including facial asymmetry or hemifacial microsomia patient, comprehensive analysis of three dimensional structure of the craniofacial skeleton is needed. Even though three dimensional CT has been developed, landmark identification of the CT is still questionable. In recent, a method for correcting cephalic malpositioning that enables accurate superimposition of the landmarks in different stages without using any additional equipment was developed. It became possible to compare the three-dimensional positional change of the maxillomandible without invasive procedure. Based on the principle of the method, a new program was developed for the purpose of diagnosis and treatment planning of dentofacial deformity patient via three dimensional visualization and structural analysis. This program enables us to perform following menu. First, visualization of three dimensional structure of the craniofacial skeleton with wire frame model which was made from the landmarks observed on both lateral and frontal cephalogram. Second, establishment of midsagittal plane of the face three dimensionally, with the concept of "the plane of the best-fit". Third, examination of the degree of deviation and direction of deformity of structure to the reference plane for the purpose of establishing surgical planning. Fourth, simulation of expected postoperative result by various image operation such as mirroring, overlapping.

  • PDF

3-Dimensional Conformal Radiation Therapy in Carcinoma of The Nasopharynx (비인강암의 3차원 입체조형치료에서 등가선량분포에 관한 연구)

  • Keum Ki Chang;Kim Gwi Eon;Lee Sang Hoon;Chang Sei Kyung;Lim Jihoon;Park Won;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.399-408
    • /
    • 1998
  • Purpose : This study was designed to demonstrate the potential therapeutic advantage of 3-dimensional (3-D) treatment planning over the conventional 2-dimensional (2-D) approach in patients with carcinoma of the nasopharynx. Materials and Methods : The two techniques were compared both qualitatively and quantitatively for the boost portion of the treatment (19.8 Gy of a total 70.2 Gy treatment schedule) in patient with T4. The comparisons between 2-D and 3-D plans were made using dose statistics, dose-volume histogram, tumor control probabilities, and normal tissue complication probabilities. Results : The 3-D treatment planning improved the dose homogeneity in the planning target volume. In addition, it caused the mean dose of the planning target volume to increase by 15.2$\%$ over 2-D planning. The mean dose to normal structures such as the temporal lobe, brain stem, parotid gland, and temporomandibular joint was reduced with the 3-D plan. The probability of tumor control was increased by 6$\%$ with 3-D treatment planning compared to the 2-D planning, while the probability of normal tissue complication was reduced. Conclusion : This study demonstrated the potential advantage of increasing the tumor control by using 3-D planning. but prospective studies are required to define the true clinical benefit.

  • PDF