• 제목/요약/키워드: Three-dimensional Pose

검색결과 63건 처리시간 0.022초

최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘 설계 (Design of Face Recognition Algorithm based Optimized pRBFNNs Using Three-dimensional Scanner)

  • 마창민;유성훈;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.748-753
    • /
    • 2012
  • 본 논문에서는 최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘을 설계한다. 일반적으로 2차원 영상을 이용한 얼굴인식 시스템은 사진의 명암도를 이용하여 얼굴의 특징을 추출하게 된다. 그렇기 때문에 빛이나 조명, 또는 얼굴 포즈와 같은 환경 변화들은 시스템의 성능을 저하시킨다. 따라서 본 논문에서 제안된 얼굴인식 알고리즘은 2차원 얼굴인식 시스템의 한계를 극복하기 위하여 3차원 스캐너를 사용하여 설계한다. 먼저 3차원 스캐너를 이용하여 얼굴 형상을 스캔하고 스캔된 얼굴 형상은 포즈 보상 과정을 통하여 정면으로 변환된다. 그 후에 Point Signature 기법을 사용하여 얼굴의 깊이 정보를 추출하고 마지막으로 고차원 패턴인식 문제에 대한 해결을 위하여 최적화된 pRBFNNs (Polynomial-based Radial Basis Function Neural Networks) 모델을 사용하여 인식성능을 확인한다.

A Spatial-Temporal Three-Dimensional Human Pose Reconstruction Framework

  • Nguyen, Xuan Thanh;Ngo, Thi Duyen;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.399-409
    • /
    • 2019
  • Three-dimensional (3D) human pose reconstruction from single-view image is a difficult and challenging topic. Existing approaches mostly process frame-by-frame independently while inter-frames are highly correlated in a sequence. In contrast, we introduce a novel spatial-temporal 3D human pose reconstruction framework that leverages both intra and inter-frame relationships in consecutive 2D pose sequences. Orthogonal matching pursuit (OMP) algorithm, pre-trained pose-angle limits and temporal models have been implemented. Several quantitative comparisons between our proposed framework and recent works have been studied on CMU motion capture dataset and Vietnamese traditional dance sequences. Our framework outperforms others by 10% lower of Euclidean reconstruction error and more robust against Gaussian noise. Additionally, it is also important to mention that our reconstructed 3D pose sequences are more natural and smoother than others.

최적화된 PRBFNNs 패턴분류기와 PCA알고리즘을 이용한 3차원 얼굴인식 알고리즘 설계 : 진화 알고리즘의 비교 해석 (Design of Three-dimensional Face Recognition System Using Optimized PRBFNNs and PCA : Comparative Analysis of Evolutionary Algorithms)

  • 오성권;오승훈;김현기
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.539-544
    • /
    • 2013
  • 본 논문에서는 다항식 기반 RBFNNs를 이용하여 3차원 얼굴인식 알고리즘을 설계하고 인식률을 산출하는 방법을 제시한다. 2차원 얼굴인식의 경우 얼굴 포즈, 조명 등과 같은 외부 환경에 의해 인식률이 저하된다. 이러한 단점을 보완하기 위해 3차원 영상을 획득하여 얼굴인식을 수행한다. 얼굴인식을 수행하기 전에 3D스캐너를 통해 얻은 얼굴영상의 포즈 보상을 실시하고 얼굴의 형상을 정면으로 향하게 한다. 그리고 Point Signature 기법을 이용하여 얼굴의 깊이 값을 추출하게 된다. 추출된 데이터는 고차원 데이터로서 학습 및 인식을 수행함에 있어 문제가 생길 수 있기 때문에 PCA알고리즘을 수행하여 차원을 축소한 데이터를 사용한다. 효율적인 학습을 위해 최적화 알고리즘을 통해 파라미터 최적화를 수행하며 PSO, DE, GA 알고리즘을 사용하여 인식 성능을 확인한다.

Pose-normalized 3D Face Modeling for Face Recognition

  • Yu, Sun-Jin;Lee, Sang-Youn
    • 한국통신학회논문지
    • /
    • 제35권12C호
    • /
    • pp.984-994
    • /
    • 2010
  • Pose variation is a critical problem in face recognition. Three-dimensional(3D) face recognition techniques have been proposed, as 3D data contains depth information that may allow problems of pose variation to be handled more effectively than with 2D face recognition methods. This paper proposes a pose-normalized 3D face modeling method that translates and rotates any pose angle to a frontal pose using a plane fitting method by Singular Value Decomposition(SVD). First, we reconstruct 3D face data with stereo vision method. Second, nose peak point is estimated by depth information and then the angle of pose is estimated by a facial plane fitting algorithm using four facial features. Next, using the estimated pose angle, the 3D face is translated and rotated to a frontal pose. To demonstrate the effectiveness of the proposed method, we designed 2D and 3D face recognition experiments. The experimental results show that the performance of the normalized 3D face recognition method is superior to that of an un-normalized 3D face recognition method for overcoming the problems of pose variation.

Pose Estimation of an Object from X-ray Images Based on Principal Axis Analysis

  • Roh, Young-Jun;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.97.4-97
    • /
    • 2002
  • 1. Introduction Pose estimation of a three dimensional object has been studied in robot vision area, and it is needed in a number of industrial applications such as process monitoring and control, assembly and PCB inspection. In this research, we propose a new pose estimation method based on principal axes analysis. Here, it is assumed that the locations of x-ray source and the image plane are predetermined and the object geometry is known. To this end, we define a dispersion matrix of an object, which is a discrete form of inertia matrix of the object. It can be determined here from a set of x-ray images, at least three images are required. Then, the pose information is obtained fro...

  • PDF

Pose Estimation of 3D Object by Parametric Eigen Space Method Using Blurred Edge Images

  • Kim, Jin-Woo
    • 한국멀티미디어학회논문지
    • /
    • 제7권12호
    • /
    • pp.1745-1753
    • /
    • 2004
  • A method of estimating the pose of a three-dimensional object from a set of two-dimensioal images based on parametric eigenspace method is proposed. A Gaussian blurred edge image is used as an input image instead of the original image itself as has been used previously. The set of input images is compressed using K-L transformation. By comparing the estimation errors for the original, blurred original, edge, and blurred edge images, we show that blurring with the Gaussian function and the use of edge images enhance the data compression ratio and decrease the resulting from smoothing the trajectory in the parametric eigenspace, thereby allowing better pose estimation to be achieved than that obtainable using the original images as it is. The proposed method is shown to have improved efficiency, especially in cases with occlusion, position shift, and illumination variation. The results of the pose angle estimation show that the blurred edge image has the mean absolute errors of the pose angle in the measure of 4.09 degrees less for occlusion and 3.827 degrees less for position shift than that of the original image.

  • PDF

포즈 변화에 강인한 3차원 얼굴인식 (Pose Invariant 3D Face Recognition)

  • 송환종;양욱일;이용욱;손광훈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2000-2003
    • /
    • 2003
  • This paper presents a three-dimensional (3D) head pose estimation algorithm for robust face recognition. Given a 3D input image, we automatically extract several important 3D facial feature points based on the facial geometry. To estimate 3D head pose accurately, we propose an Error Compensated-SVD (EC-SVD) algorithm. We estimate the initial 3D head pose of an input image using Singular Value Decomposition (SVD) method, and then perform a Pose refinement procedure in the normalized face space to compensate for the error for each axis. Experimental results show that the proposed method is capable of estimating pose accurately, therefore suitable for 3D face recognition.

  • PDF

효과적인 3차원 객체 인식 및 자세 추정을 위한 외형 및 SIFT 특징 정보 결합 기법 (Combining Shape and SIFT Features for 3-D Object Detection and Pose Estimation)

  • 탁윤식;황인준
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.429-435
    • /
    • 2010
  • Three dimensional (3-D) object detection and pose estimation from a single view query image has been an important issue in various fields such as medical applications, robot vision, and manufacturing automation. However, most of the existing methods are not appropriate in a real time environment since object detection and pose estimation requires extensive information and computation. In this paper, we present a fast 3-D object detection and pose estimation scheme based on surrounding camera view-changed images of objects. Our scheme has two parts. First, we detect images similar to the query image from the database based on the shape feature, and calculate candidate poses. Second, we perform accurate pose estimation for the candidate poses using the scale invariant feature transform (SIFT) method. We earned out extensive experiments on our prototype system and achieved excellent performance, and we report some of the results.

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

방송 축구 영상으로부터 3차원 애니메이션 변환을 위한 축구 선수 동작 인식 (Pose Recognition of Soccer Players for Three Dimensional Animation)

  • 장원철;남시욱;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(4)
    • /
    • pp.33-36
    • /
    • 2000
  • To create a more realistic soccer game derived from TV images, we are developing an image synthesis system that generates 3D image sequence from TV images. We propose the method for the team and the pose recognition of players in TV images. The representation includes camera calibration method, team recognition method and pose recognition method. To find the location of a player on the field, a field model is constructed and a player's field position is transformed by 4-feature points. To recognize the team information of players, we compute RGB mean values and standard deviations of a player in TV images. Finally, to recognize pose of a player, this system computes the velocity and the ratio of player(height/width). Experimental results are included to evaluate the performance of the team and the pose recognition.

  • PDF