• Title/Summary/Keyword: Three-dimensional Motion Analysis

Search Result 536, Processing Time 0.026 seconds

Numerical analysis of blood flow in the cactus type KTAH (선인장 형태의 한국형 인공심장 내 3차원 혈류의 수치적 해석)

  • Park M.S.;Ko H.J.;Min B.G.;Shim E.B.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.695-696
    • /
    • 2002
  • Three-dimensional blood flow in the sac of the KTAH(Korean total artificial heart) is simulated using fluid-structure interaction model. The aim of this study is to delineate the three-dimensional unsteady-blood flow in the sac of KTAH. Incompressible viscous flow is assumed for blood using the assumption of Newtonian fluid. The numerical method employed in this study is the finite element software called ADINA. Fluid-structure interaction model between blood and sac is utilized to represent the deformation of the sac by the rigid moving actuator. Three-dimensional geometry of cactus type KTAH is chosen for numerical model with prescribed pressure boundary condition on the sac surface. Blood flow is generated by the motion of moving actuator and strongly interacts with the solid material surrounding blood. High shear stress is observed mainly near the inlet and outlet of the sac.

  • PDF

Study on Non-linear Error Effect of Three Dimensional Control Surface Linkage Using Kinematic Analysis (3차원 조종면 변위센서 링크의 운동학적 해석을 통한 비선형 오차 영향 연구)

  • Lee, Sug-Chon;Kim, Jae-Eun;Lee, Sang-Jong
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • It is very important to correctly set control surface linkage. But a lot of bad setting case has been seen in especially remote controled airplanes and middle size UAVs. In this paper, a three dimensional linkage from control surface to deflection sensor was analyzed kinematically and a position analysis was simulated using algebraic algorithm in terms of nonlinear error of deflection angle. Three correct settings of the linkage came out of this research. One is two-dimensional motion, another is link ratio of 1 and the other is that effective lever of the control surface should be perpendicular to a pushrod in their neutral position.

Dynamic Response Characteristics of a Floating Ocean City in Waves (부유식 해양도시의 동적응답특성)

  • 구자삼;홍석원
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.80-92
    • /
    • 1994
  • The dynamic response characteristics of a floating ocean city are examined for presenting the basic data for the design of huge offshore structures supported by a large number of floating bodies in waves. The numerical approach which is accurate in linear system is based on combination of a three dimensional source distribution method, wave interaction theory and the finite element method of using the space frame element. The hydrodynamic interactions among the floating bodies are taken into account in their exact form within the context of linear potential theory in the motion and structural analysis. The method is applicable to an arbitrary number of three dimensional bodies having any individual body geometries and geometrical arrangement with the restriction that the circumscribed, bottom-mounted. Imaginary vertical cylinder for each body does not contain any part of the other body. The validity of this procedure was verified by comparing with experimental results obtained in the literature.

  • PDF

3-D Vibration analysis of FG-MWCNTs/Phenolic sandwich sectorial plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.649-662
    • /
    • 2018
  • In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of sandwich sectorial plates with multiwalled carbon nanotube-(MWCNT)-reinforced composite core are considered. Modified Halpin-Tsai equation is used to evaluate the Young's modulus of the MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. In this paper, free vibration of thick functionally graded sandwich annular sectorial plates with simply supported radial edges and different circular edge conditions including simply supported-clamped, clamped-clamped, and free-clamped is investigated. A semi-analytical approach composed of two-dimensional differential quadrature method and series solution are adopted to solve the equations of motion. The material properties change continuously through the core thickness of the plate, which can vary according to a power-law, exponentially, or any other formulations in this direction. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated sectorial plates.

Appropriate Input Earthquake Motion for the Verification of Seismic Response Analysis by Geotechnical Dynamic Centrifuge Test (동적원심모형 시험을 이용한 부지응답해석 검증시 입력 지진의 결정)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.209-217
    • /
    • 2013
  • In order to verify the reliability of numerical site response analysis program, both soil free-field and base rock input motions should be provided. Beside the field earthquake motion records, the most effective testing method for obtaining the above motions is the dynamic geotechnical centrifuge test. However, need is to verify if the motion recorded at the base of the soil model container in the centrifuge facility is the true base rock input motion or not. In this paper, the appropriate input motion measurement method for the verification of seismic response analysis is examined by dynamic geotechnical centrifuge test and using three-dimensional finite difference analysis results. From the results, it appears that the ESB (equivalent shear beam) model container distorts downward the propagating wave with larger magnitude of centrifugal acceleration and base rock input motion. Thus, the distortion makes the measurement of the base rock outcrop motion difficult which is essential for extracting the base rock incident motion. However, the base rock outcrop motion generated by using deconvolution method is free from the distortion effect of centrifugal acceleration.

Verification and improvement of dynamic motion model in MARS for marine reactor thermal-hydraulic analysis under ocean condition

  • Beom, Hee-Kwan;Kim, Geon-Woo;Park, Goon-Cherl;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1231-1240
    • /
    • 2019
  • Unlike land-based nuclear power plants, a marine or floating reactor is affected by external forces due to ocean conditions. These external forces can cause additional accelerations and affect each system and equipment of the marine reactor. Therefore, in designing a marine reactor and evaluating its performance and stability, a thermal hydraulic safety analysis code is necessary to consider the thermal hydrodynamic effects of ship motion. MARS, which is a reactor system analysis code, includes a dynamic motion model that can simulate the thermal-hydraulic phenomena under three-dimensional motion by calculating the body force term included in the momentum equation. In this study, it was verified that the dynamic motion model can simulate fluid motion with reasonable accuracy using conceptual problems. In addition, two modifications were made to the dynamic motion model; first, a user-supplied table to simulate a realistic ship motion was implemented, and second, the flow regime map determination algorithm was improved by calculating the volume inclination information at every time step if the dynamic motion model was activated. With these modifications, MARS could simulate the thermal-hydraulic phenomena under ocean motion more realistically.

Sub-structuring Technique of High-speed Train-bridge Interaction Analysis for Foundation Design (기초 설계를 위한 고속철도 교량-열차 상호작용 해석의 부구조화 기법)

  • Lee, Kang-Il;Song, Myung-Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.35-43
    • /
    • 2021
  • In this paper, the sub-structuring technique-applied train-bridge interaction analysis model, which is formulated based on the simplified three-dimensional train-bridge interaction analysis model for high-speed bridge-train interaction analysis, is presented. In the sub-structuring technique, the super-structure and the supporting structure of railway bridges can be modeled as sub-structures, and train-bridge interaction analysis can be efficiently performed. As a train analysis model, two-dimensional train model is used, and the Lagrange equation of motion is applied to derive the equation of motion of two-dimensional train. In the sub-structuring technique, the number of degrees of freedom can be reduced by using the condensation method, thus reducing the time and cost for calculating the eigenvalues and eigenvectors, and the time and cost for the subsequent calculation. In this paper, Guyan reduction method is used as sub-structuring technique. By combining simplified three-dimensional bridge-train interaction analysis and Guyan reduction method, the efficient and accurate bridge-train interaction analysis can be performed.

Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine (SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석)

  • Kim, Y.N.;Lee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

Analysis of Motions and Wave Loads of Twin-Hull Ships in Waves (쌍동선의 운동 및 파랑하중 해석)

  • Goo, Ja-Sam;Jo, Hyo-Jae;Lee, Seung-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.132-142
    • /
    • 1999
  • A three-dimensional linearised potential theory is presented for the prediction of motions and dynamic structural responses of twin-hull ships travelling with forward speed in regular waves. Comparisons between theoretical and experimental results are shown for the motion responses and lateral wave loads of an ASR(anti-submarine rescue) catamaran. In general, good agreement between theory and experiment is found except for some discrepancies that are believed to be caused by neglect of forward speed effects on free surface.

  • PDF

Analysis of Wave Loads of Ships with Advancing Speed in Regular Waves (규칙파중을 항행하는 선박의 파랑하중해석)

  • Lee, S.C.;Doh, D.H.;Goo, J.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.53-58
    • /
    • 2010
  • A three-dimensional source distribution method is presented for the prediction of motions and vertical bending moments of ships travelling with forward speed in regular waves. Comparisons between theoretical and experimental results are shown for the motion responses and vertical bending moment of the S175 container ship model by Watanabe et al. The model ship was made of synthetic resins so as to simulate bending rigidity of a full scale ship. Numerical results are compared with experimental and numerical ones obtained in the literature. The results of comparison confirmed the validity of the proposed approach.