DOI QR코드

DOI QR Code

Sub-structuring Technique of High-speed Train-bridge Interaction Analysis for Foundation Design

기초 설계를 위한 고속철도 교량-열차 상호작용 해석의 부구조화 기법

  • Received : 2021.05.11
  • Accepted : 2021.06.16
  • Published : 2021.06.30

Abstract

In this paper, the sub-structuring technique-applied train-bridge interaction analysis model, which is formulated based on the simplified three-dimensional train-bridge interaction analysis model for high-speed bridge-train interaction analysis, is presented. In the sub-structuring technique, the super-structure and the supporting structure of railway bridges can be modeled as sub-structures, and train-bridge interaction analysis can be efficiently performed. As a train analysis model, two-dimensional train model is used, and the Lagrange equation of motion is applied to derive the equation of motion of two-dimensional train. In the sub-structuring technique, the number of degrees of freedom can be reduced by using the condensation method, thus reducing the time and cost for calculating the eigenvalues and eigenvectors, and the time and cost for the subsequent calculation. In this paper, Guyan reduction method is used as sub-structuring technique. By combining simplified three-dimensional bridge-train interaction analysis and Guyan reduction method, the efficient and accurate bridge-train interaction analysis can be performed.

본 논문에서는 고속철도 교량-열차 상호작용 해석을 위한 단순 3 차원 상호작용 해석모델을 기반으로 하여 정식화한 부구조화 기법 적용 상호작용 해석모델을 제시한다. 부구조화 기법에서는 철도 교량의 상부 구조와 지지 구조를 각각 부구조로 모델링하고, 열차-교량 상호작용 해석을 효율적으로 수행할 수 있다. 열차 해석 모델로는 2차원 열차 모델을 사용하고, Lagrange 운동방정식을 적용하여 2차원 열차의 운동방정식을 유도한다. 부구조화 기법에서는 응축 방법을 사용하여 자유도(Degree of freedom)의 수를 줄일 수 있으므로 고유 값 및 고유 벡터 계산을 위한 소요 시간 및 비용과 후속 계산의 소요시간 및 비용이 줄어든다. 본 논문에서는 부구조화 기법으로 Guyan 감소 방법을 사용한다. 단순 3 차원 교량-열차 상호작용 해석과 Guyan 감소 방법을 결합하여 효율적이고 정확한 교량-열차 상호작용 해석을 수행할 수 있다.

Keywords

References

  1. Arvidsson, T. (2018), Train-track-bridge Interaction for the Analysis of Railway Bridges and Train Running Safety, Doctoral Thesis, KTH Royal Institute of Technology.
  2. Biondi, B., Muscolino, G. and Sofi, A. (2005), A Substructure Approach for the Dynamic Analysis of Train-track-bridge System, Computers and Structures, Vol.83, pp.2271-2281. https://doi.org/10.1016/j.compstruc.2005.03.036
  3. Chang, T. P. and Liu, Y. N. (1996), Dynamic Finite Element Analysis of a Nonlinear Beam subjected to a Moving Load, International Journal of Solids and Structures, Vol.33, No. 12, pp.1673-1688. https://doi.org/10.1016/0020-7683(95)00128-X
  4. Cook, R. D., Malkus, D. S. and Plesha, M. E. (1989), Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley & Sons., USA.
  5. Engberg, M. (2017), Dynamic Bridge Interaction in High-speed Railway Design, Master's Thesis, Chalmers University of Technology.
  6. Fonseka, M. C. M. (1993), A Sub-structure Condensation Technique in Finite Element Analysis for the Optimal Use of Computer Memory, Computers & Structures, Vol.49, No. 3, pp.537-543. https://doi.org/10.1016/0045-7949(93)90055-I
  7. Fryba, L. (1996), Dynamics of Railway Bridges, Thomas Telford House, Czech Republic.
  8. Furuike, T. (1972), Computerized Multiple Level Substructuring Analysis, Computers & Structures, Vol.2, pp.1063-1073. https://doi.org/10.1016/0045-7949(72)90056-9
  9. Gong, W., Zhu, Z. and Wang, K. (2020), A Real Time Co-simulation Solution for Train-track-bridge Interaction, Journal of Vibration and Control, Vol.27, No.13-14, pp.1606-1616. https://doi.org/10.1177/1077546320946631
  10. Kim, S. I. (2000), Bridge-train Interaction Analysis of High-speed Railway Bridges, Doctoral Thesis, Seoul National University.
  11. Park, H. S. (1999), Dynamic Analysis of Bridges using Advanced High-speed Railway Vehicle Mode, Doctoral Thesis, Yonsei University.
  12. Przemieniecki, J. S. (1968), Theory of Matrix Structural Analysis, McGraw-Hill, USA.
  13. Qiao, H., Xia, H. and Du, X. (2018), Dynamic Analysis of an Integrated Train-bridge-foundation-soil System by the Substructure Method, International Journal of Structural Stability and Dynamics, Vol.18, No.5, pp.1-25.
  14. Song, M. K. and Choi, C. K. (2002), Analysis of High-speed Vehicle-Bridge Interactions by a Simplified 3-D Model, Structural Engineering and Mechanics, An Int'l Journal, Vol. 13, No.5, pp.505-532. https://doi.org/10.12989/sem.2002.13.5.505
  15. Zhang, N., Tian, Y. and Xia, H. (2016), A Train-bridge Dynamic Interaction Analysis Method and Its Experimental Validation, Engineering, Vol.2, No.4, pp.528-536. https://doi.org/10.1016/j.eng.2016.04.012