• 제목/요약/키워드: Three-dimensional Crack

검색결과 260건 처리시간 0.023초

가중함수법에 의한 기계적 체결홀에 존재하는 타원호형 관통균열의 음력확대계수 해석 ( I ) - 가중함수법의 전개 - (Stress Intensity Factor Analysis of Elliptical Arc Through Cracks at Mechanical Fastener Holes by Weight Function Method ( I ) - Development of Weight Function Method -)

  • 허성필;양원호;현철승
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1659-1670
    • /
    • 2001
  • It has been reported that cracks at mechanical fastener holes usually nucleate as elliptical corner cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. The weight function method is an efficient technique to calculate the stress intensity factors fur elliptical cracks using uncracked stress field. In this study the weight function method for three dimensional mixed-mode problem applied to elliptical comer cracks Is modified for elliptical arc through cracks and the stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by the weight function method. This study consists of two parts and in part I , the weight function method for elliptical arc through cracks is developed and verified.

금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가 (Evaluation of Wear Characteristics of AISI H13 Tool Steel Repaired by Metal 3D Printing)

  • 이성윤;이인규;정명식;이재욱;이선봉;이상곤
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.9-15
    • /
    • 2017
  • In hot forming process, the dies in which excessive worn or crack occurs is reused after repair. Generally hot forming dies are recycled through a welding repair method. Welding repair methods are highly dependent on the skills of engineer. It causes process defects such as dimensional defects and structural defects. Recently, the metal 3D printing method has been applied to the repair of used dies. The aim of this study is to evaluate the wear characteristics of AISI H13 tool steel repaired by 3D printing method. Three kinds of wear specimens were fabricated by using 3D printing, welding, and initial material. A pin-on-disk wear test was carried out to evaluate the wear characteristics. From the result of wear test, the wear characteristics of 3D printing method was superior to that of the welded material, and was similar to that of the initial material.

파릴렌 고분자의 특성 및 응용 (Characteristics of Parylene Polymer and Its Applications)

  • 윤영수;최선희;김주선;남상철
    • 한국재료학회지
    • /
    • 제14권6호
    • /
    • pp.443-450
    • /
    • 2004
  • Parylene polymer thin film shows excellent homogeneous coverage chracteristics when it was deposited onto very complex three dimensional solid matters, such as deep hole and micro crack. The parylene deposition process can be conducted at room temperature although most of chemical vapor deposition processes request relatively high processing temperature. Therefore, the parylene coating process does not induce any thermal problems. Parylene thin film is transparent and has extremly high chemical stability. For example, it shows high chemical stability with high reactive chemical solutions such as strong acid, strong alkali and acetone. The bio-stability of this material gives good chances to use for a packaging of biomedical devices and electronic devices such as display. In this review article, principle of deposition process, properties and application fields of parylene polymer thin film are introduced.

침식-부식에 의해 감육된 배관의 파손거동에 미치는 감육위치의 영향 (Effect of Local Wall Thinned Location due to Erosion-Corrosion on Fracture Behavior of Pipes)

  • 안석환;석금철;남기우
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.51-58
    • /
    • 2007
  • This study on the effects of local wall-thinned location on the fracture behavior of pipes was carried out, and the results were compared with the analytical results. Local wall-thinning for the bending test was machined with various sizes on the outside of pipes, in order to simulate the metal loss, due to erosion/corrosion. In addition, we had carried out FE analysis for the pipes with local wall thinning on the inside, and its results were comparatively studied with that of the outside. Three-dimensional elasto-plastic analyses were able to accurately simulate fracture behaviors of inner or outer wall thinning. Fracture types, obtained from the experiments and analyses, could be classified into ovalization, local buckling and crack initiation, depending on the thinned length and thinned ratio. Based on the results, the fracture behaviors of pipes with the outer wall thinning can be applied to estimate the fracture behaviors of pipes with the inner wall thinning.

Q의 실험적 측정법 (An Experimental Method for Measuring Q)

  • 김동학;이정현;강기주
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1607-1613
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the in-plane strain. In addition, the effect of location where the displacement and strain are measured is explored.

소변형 이론에 입각한 감육이 존재하는 90 도 곡관의 소성 한계 하중 (II)- 굽힘 - (Plastic Limit Loads of 90° Elbows with Local Wall-Thinning Using Small Strain FE Limit Analyses (II)- Bending Moment -)

  • 김종현;안중혁;홍석표;박치용;김윤재
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.496-505
    • /
    • 2007
  • This paper proposes closed-form plastic limit load solutions for elbows under in-plane bending, via three-dimensional (3-D), small strain FE limit analyses using elastic-perfectly plastic materials. A wide range of elbow and thinning geometries are considered. For systematic analyses of the effect of the axial thinning length on limit loads, two limiting cases are considered; a sufficiently long wall thinning, and the circumferential part-through surface crack. Closed-form plastic limit load solutions for wall thinning with intermediate longitudinal extents are then obtained from these two limiting cases. The effect of the axial extent of wall thinning on plastic limit loads for elbows is highlighted by comparing that for straight pipes. Although the proposed solutions are developed for the case when wall thinning exists in the center of elbows, it is also shown that they can be applied to the case when wall thinning exists anywhere within the elbow.

Finite element analysis of reinforced concrete spandrel beams under combined loading

  • Ibraheem, O.F.;Bakar, B.H. Abu;Johari, I.
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.291-308
    • /
    • 2014
  • A nonlinear, three-dimensional finite element analysis was conducted on six intermediate L-shaped spandrel beams using the "ANSYS Civil FEM" program. The beams were constructed and tested in the laboratory under eccentric concentrated load at mid-span to obtain a combined loading case: torsion, bending, and shear. The reinforcement case parameters were as follows: without reinforcement, with longitudinal reinforcement only, and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions: T/V = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). The failure of the plain beams was brittle, and the addition of longitudinal steel bars increased beam strength, particularly under low eccentricity. Transverse reinforcement significantly affected the strength at high eccentricities, that is, at high torque. A program can predict accurately the behavior of these beams under different reinforcement cases, as well as under different ratios of combined loadings. The ANSYS model accurately predicted the loads and deflections for various types of reinforcements in spandrel beams, and captured the critical crack regions of these beams.

Structural behaviors of notched steel beams strengthened using CFRP strips

  • Yousefi, Omid;Narmashiri, Kambiz;Ghaemdoust, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.35-43
    • /
    • 2017
  • This paper presents the findings of experimental and numerical investigations on failure analysis and structural behavior of notched steel I-beams reinforced by bonded Carbon Fiber Reinforced Polymer (CFRP) plates under static load. To find solutions for preventing or delaying the failures, understanding the CFRP failure modes is beneficial. One non-strengthened control beam and four specimens with different deficiencies (one side and two sides) on flexural flanges in both experimental test and simulation were studied. Two additional notched beams were investigated just numerically. In the experimental test, four-point bending method with static gradual loading was employed. To simulate the specimens, ABAQUS software in full three dimensional (3D) case and non-linear analysis method was applied. The results show that the CFRP failure modes in strengthening of deficient steel I-beams include end-debonding, below point load debonding, splitting and delamination. Strengthening schedule is important to the occurrences and sequences of CFRP failure modes. Additionally, application of CFRP plates in the deficiency region prevents crack propagation and brittle failure.

Numerical analysis on the behaviour of reinforced concrete frame structures in fire

  • Dzolev, Igor M.;Cvetkovska, Meri J.;Ladinovic, Dorde Z.;Radonjanin, Vlastimir S.
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.637-647
    • /
    • 2018
  • Numerical approach using finite element method has been used to evaluate the behaviour of reinforced concrete frame structure subjected to fire. The structure is previously designed in accordance with Eurocode standards for the design of structures for earthquake resistance, for the ductility class M. Thermal and structural response are obtained using a commercially available software ANSYS. Temperature-dependent nonlinear thermal and mechanical properties are adopted according to Eurocode standards, with the application of constitutive model for the triaxial behaviour of concrete with a smeared crack approach. Discrete modelling of concrete and reinforcement has enabled monitoring of the behaviour at a global, as well as at a local level, providing information on the level of damage occurring during fire. Critical regions in frame structures are identified and assessed, based on temperatures, displacements, variations of internal forces magnitudes and achieved plastic deformations of main reinforcement bars. Parametric analyses are conducted for different fire scenarios and different types of concrete aggregate to determine their effect on global deformations of frame structures. According to analyses results, the three-dimensional finite element model can be used to evaluate the insulation and mechanical resistance criteria of reinforced concrete frame structures subjected to nominal fire curves.

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.