• Title/Summary/Keyword: Three-dimensional Convolutional Neural Network

Search Result 33, Processing Time 0.022 seconds

Human Gait Recognition Based on Spatio-Temporal Deep Convolutional Neural Network for Identification

  • Zhang, Ning;Park, Jin-ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.927-939
    • /
    • 2020
  • Gait recognition can identify people's identity from a long distance, which is very important for improving the intelligence of the monitoring system. Among many human features, gait features have the advantages of being remotely available, robust, and secure. Traditional gait feature extraction, affected by the development of behavior recognition, can only rely on manual feature extraction, which cannot meet the needs of fine gait recognition. The emergence of deep convolutional neural networks has made researchers get rid of complex feature design engineering, and can automatically learn available features through data, which has been widely used. In this paper,conduct feature metric learning in the three-dimensional space by combining the three-dimensional convolution features of the gait sequence and the Siamese structure. This method can capture the information of spatial dimension and time dimension from the continuous periodic gait sequence, and further improve the accuracy and practicability of gait recognition.

Assessment of ASPECTS from CT Scans using Deep Learning

  • Khanh, Trinh Le Ba;Baek, Byung Hyun;Kim, Seul Kee;Do, Luu-Ngoc;Yoon, Woong;Park, Ilwoo;Yang, Hyung-Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.573-579
    • /
    • 2019
  • Alberta Stroke Program Early Computed Tomographic Scoring (ASPECTS) is a 10-point CT-scan score designed to quantify early ischemic changes in patients with acute ischemic stroke. However, an assessment of ASPECTS remains a challenge for neuroradiologists in stroke centers. The purpose of this study is to develop an automated ASPECTS scoring system that provides decision-making support by utilizing binary classification with three-dimensional convolutional neural network to analyze CT images. The proposed method consists of three main steps: slice filtering, contrast enhancement and image classification. The experiments show that the obtained results are very promising.

MLCNN-COV: A multilabel convolutional neural network-based framework to identify negative COVID medicine responses from the chemical three-dimensional conformer

  • Pranab Das;Dilwar Hussain Mazumder
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.290-306
    • /
    • 2024
  • To treat the novel COronaVIrus Disease (COVID), comparatively fewer medicines have been approved. Due to the global pandemic status of COVID, several medicines are being developed to treat patients. The modern COVID medicines development process has various challenges, including predicting and detecting hazardous COVID medicine responses. Moreover, correctly predicting harmful COVID medicine reactions is essential for health safety. Significant developments in computational models in medicine development can make it possible to identify adverse COVID medicine reactions. Since the beginning of the COVID pandemic, there has been significant demand for developing COVID medicines. Therefore, this paper presents the transferlearning methodology and a multilabel convolutional neural network for COVID (MLCNN-COV) medicines development model to identify negative responses of COVID medicines. For analysis, a framework is proposed with five multilabel transfer-learning models, namely, MobileNetv2, ResNet50, VGG19, DenseNet201, and Inceptionv3, and an MLCNN-COV model is designed with an image augmentation (IA) technique and validated through experiments on the image of three-dimensional chemical conformer of 17 number of COVID medicines. The RGB color channel is utilized to represent the feature of the image, and image features are extracted by employing the Convolution2D and MaxPooling2D layer. The findings of the current MLCNN-COV are promising, and it can identify individual adverse reactions of medicines, with the accuracy ranging from 88.24% to 100%, which outperformed the transfer-learning model's performance. It shows that three-dimensional conformers adequately identify negative COVID medicine responses.

Human Activity Recognition Based on 3D Residual Dense Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1540-1551
    • /
    • 2020
  • Aiming at the problem that the existing human behavior recognition algorithm cannot fully utilize the multi-level spatio-temporal information of the network, a human behavior recognition algorithm based on a dense three-dimensional residual network is proposed. First, the proposed algorithm uses a dense block of three-dimensional residuals as the basic module of the network. The module extracts the hierarchical features of human behavior through densely connected convolutional layers; Secondly, the local feature aggregation adaptive method is used to learn the local dense features of human behavior; Then, the residual connection module is applied to promote the flow of feature information and reduced the difficulty of training; Finally, the multi-layer local feature extraction of the network is realized by cascading multiple three-dimensional residual dense blocks, and use the global feature aggregation adaptive method to learn the features of all network layers to realize human behavior recognition. A large number of experimental results on benchmark datasets KTH show that the recognition rate (top-l accuracy) of the proposed algorithm reaches 93.52%. Compared with the three-dimensional convolutional neural network (C3D) algorithm, it has improved by 3.93 percentage points. The proposed algorithm framework has good robustness and transfer learning ability, and can effectively handle a variety of video behavior recognition tasks.

Application Research on Obstruction Area Detection of Building Wall using R-CNN Technique (R-CNN 기법을 이용한 건물 벽 폐색영역 추출 적용 연구)

  • Kim, Hye Jin;Lee, Jeong Min;Bae, Kyoung Ho;Eo, Yang Dam
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.213-225
    • /
    • 2018
  • For constructing three-dimensional (3D) spatial information occlusion region problem arises in the process of taking the texture of the building. In order to solve this problem, it is necessary to investigate the automation method to automatically recognize the occlusion region, issue it, and automatically complement the texture. In fact there are occasions when it is possible to generate a very large number of structures and occlusion, so alternatives to overcome are being considered. In this study, we attempt to apply an approach to automatically create an occlusion region based on learning by patterning the blocked region using the recently emerging deep learning algorithm. Experiment to see the performance automatic detection of people, banners, vehicles, and traffic lights that cause occlusion in building walls using two advanced algorithms of Convolutional Neural Network (CNN) technique, Faster Region-based Convolutional Neural Network (R-CNN) and Mask R-CNN. And the results of the automatic detection by learning the banners in the pre-learned model of the Mask R-CNN method were found to be excellent.

Prediction of Ship Resistance Performance Based on the Convolutional Neural Network With Voxelization (합성곱 신경망과 복셀화를 활용한 선박 저항 성능 예측)

  • Jongseo Park;Minjoo Choi;Gisu Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.110-119
    • /
    • 2023
  • The prediction of ship resistance performance is typically obtained by Computational Fluid Dynamics (CFD) simulations or model tests in towing tank. However, these methods are both costly and time-consuming, so hull-form designers use statistical methods for a quick feed-back during the early design stage. It is well known that results from statistical methods are often less accurate compared to those from CFD simulations or model tests. To overcome this problem, this study suggests a new approach using a Convolution Neural Network (CNN) with voxelized hull-form data. By converting the original Computer Aided Design (CAD) data into three dimensional voxels, the CNN is able to abstract the hull-form data, focusing only on important features. For the verification, suggested method in this study was compared to a parametric method that uses hull parameters such as length overall and block coefficient as inputs. The results showed that the use of voxelized data significantly improves resistance performance prediction accuracy, compared to the parametric approach.

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method (딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석)

  • Park, Jimin;Kim, Kwang Yeom ;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.17-28
    • /
    • 2023
  • Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

An Efficient Hand Gesture Recognition Method using Two-Stream 3D Convolutional Neural Network Structure (이중흐름 3차원 합성곱 신경망 구조를 이용한 효율적인 손 제스처 인식 방법)

  • Choi, Hyeon-Jong;Noh, Dae-Cheol;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.66-74
    • /
    • 2018
  • Recently, there has been active studies on hand gesture recognition to increase immersion and provide user-friendly interaction in a virtual reality environment. However, most studies require specialized sensors or equipment, or show low recognition rates. This paper proposes a hand gesture recognition method using Deep Learning technology without separate sensors or equipment other than camera to recognize static and dynamic hand gestures. First, a series of hand gesture input images are converted into high-frequency images, then each of the hand gestures RGB images and their high-frequency images is learned through the DenseNet three-dimensional Convolutional Neural Network. Experimental results on 6 static hand gestures and 9 dynamic hand gestures showed an average of 92.6% recognition rate and increased 4.6% compared to previous DenseNet. The 3D defense game was implemented to verify the results of our study, and an average speed of 30 ms of gesture recognition was found to be available as a real-time user interface for virtual reality applications.

Evaluation of maxillary sinusitis from panoramic radiographs and cone-beam computed tomographic images using a convolutional neural network

  • Serindere, Gozde;Bilgili, Ersen;Yesil, Cagri;Ozveren, Neslihan
    • Imaging Science in Dentistry
    • /
    • v.52 no.2
    • /
    • pp.187-195
    • /
    • 2022
  • Purpose: This study developed a convolutional neural network (CNN) model to diagnose maxillary sinusitis on panoramic radiographs(PRs) and cone-beam computed tomographic (CBCT) images and evaluated its performance. Materials and Methods: A CNN model, which is an artificial intelligence method, was utilized. The model was trained and tested by applying 5-fold cross-validation to a dataset of 148 healthy and 148 inflamed sinus images. The CNN model was implemented using the PyTorch library of the Python programming language. A receiver operating characteristic curve was plotted, and the area under the curve, accuracy, sensitivity, specificity, positive predictive value, and negative predictive values for both imaging techniques were calculated to evaluate the model. Results: The average accuracy, sensitivity, and specificity of the model in diagnosing sinusitis from PRs were 75.7%, 75.7%, and 75.7%, respectively. The accuracy, sensitivity, and specificity of the deep-learning system in diagnosing sinusitis from CBCT images were 99.7%, 100%, and 99.3%, respectively. Conclusion: The diagnostic performance of the CNN for maxillary sinusitis from PRs was moderately high, whereas it was clearly higher with CBCT images. Three-dimensional images are accepted as the "gold standard" for diagnosis; therefore, this was not an unexpected result. Based on these results, deep-learning systems could be used as an effective guide in assisting with diagnoses, especially for less experienced practitioners.