• Title/Summary/Keyword: Three-dimensional (3D) structure analysis

Search Result 312, Processing Time 0.031 seconds

preprocessing methodology to reducing calculation errors in 3 dimensional model for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 3차원 모델의 해석 오류 저감을 위한 사전 수정 방법 연구)

  • Lee, Kyusung;Lee, Juhee;Lee, Yongjun
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2016
  • This study is part of three-dimensional(3D) heat transfer analysis program developmental process. The program is being developed without it's own built in 3D-modeller. So 3D-model must be created from another 3D-modeller such as generic CAD programs and imported to the developed program. After that, according to the 3D-geometric data form imported model, 3D-mesh created for numerical calculation. But the 3D-model created from another 3D-modeller is likely to have errors in it's geometric data such as mismatch of position between vertexes or surfaces. these errors make it difficult to create 3D-mesh for calculation. These errors are must be detected and cured in the pre-process before creating 3D-mesh. So, in this study four kinds of filters and functions are developed and tested. Firstly, 'vertex error filter' is developed for detecting and curing for position data errors between vertexes. Secondly, 'normal vector error filter' is developed for errors of surface's normal vector in 3D-model. Thirdly, 'intersection filter' is developed for extracting and creating intersection surface between adjacent objects. fourthly, 'polygon-line filter' is developed for indicating outlines of object in 3D-model. the developed filters and functions were tested on several shapes of 3D-models. and confirmed applicability. these developed filters and functions will be applied to the developed program and tested and modified continuously for less errors and more accuracy.

Comparison of 12/8 and 6/4 Switched Reluctance Motor : Noise and Vibration Aspects (12/8과 6/4 스위치드 릴럭턴스 모터의 비교 : 노이즈 및 진동)

  • Choi, Da-Woon;Li, Jian;Son, Dong-Hyuk;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.850-851
    • /
    • 2008
  • This paper compares and investigates the vibration and noise characteristics through simulations of 12/8 and 6/4 switched reluctance motors (SRMs). The radial force which is the main source of vibration is computed from two-dimensional(2D) transient magnetic finite element analysis (FEA) and compared in both time and frequency domain. At the same output power, the radial force of 6/4 SRM is found to be more than two times as that one of 12/8 SRM. Three-dimensional structural finite-element analysis (3D FEA) is used to study the mechanical characteristics. It can be concluded from static structural analysis that the maximum total deformation could be reduced to 1/26 if the motor is designed with 12/8 structure instead of 6/4. The dominant vibration modes are verified by modal analysis.

  • PDF

QSAR Studies on the Inhibitory Activity of New Methoxyacrylate Analogues against Magnaporthe grisea (Rice Blast Disease)

  • Song, Young-Seob;Sung, Nack-Do;Yu, Yong-Man;Kim, Bum-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1513-1520
    • /
    • 2004
  • We investigate a series of synthesized ${\beta}$-methoxyacrylate analogues for their 3D QSAR & HQSAR against Magnaporthe grisea (Rice Blast Disease). We perform the three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) studies, using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) procedure. In addition, we carry out a two-dimensional Quantitative Structure-Activity Relationship (2D-QSAR) study, using the Hologram QSAR (HQSAR). We perform these studies, using 53 compounds as a training set and 10 compounds as a test set. The predictive QSAR models have conventional $r^2$ values of 0.955 at CoMFA, 0.917 at CoMSIA, and 0.910 at HQSAR respectively; similarly, we obtain cross-validated coefficient $q^2$ values of 0.822 at CoMFA, 0.763 at CoMSIA, and 0.816 at HQSAR, respectively. From these studies, the CoMFA model performs better than the CoMSIA model.

CoMFA of 1-phenyl-2-substituted thioureas for their cytotoxicity

  • Im, C.U.;Park, Kang-Min;Jun, S.C.;Yim, C.B.
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.356.2-356.2
    • /
    • 2002
  • The structure of 1-phenyl-2-substituted thiourea derivatives have been studied and optimized for their cytotoxic activity. The three dimensional quantitative structure activity relationship (3D-QSAR) was investigated using comparative molecular field analysis (CoMFA). The result suggested that electrostatic and steric factors of 2-alkylureido-1-phenyl propanol derivatives were correlated well with cytotoxic activity. (omitted)

  • PDF

The Method to Calculate the Walking Energy-Weight in ERAM Model to Analyze the 3D Vertical and Horizontal Spaces in a Building (3차원 수직·수평 건축공간분석을 위한 ERAM모델의 보행에너지 가중치 산정 연구)

  • Choi, Sung-Pil;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.3-14
    • /
    • 2018
  • The aim of this study is to propose a method for calculating the weight of walking energy in ERAM model by calculating it for the analysis of vertical and horizontal spaces in a building. Conventional theories on the space analysis in the field of architectural planning predict the pedestrian volume of network spaces in urban street or in two-dimensional plane within a building, however, for vertical and horizontal spaces in a building, estimates of the pedestrian volume by those theories are limited. Because in the spatial syntax and ERAM model have been applied weights such as the spatial depth, adjacent angles, and physical distances available only to the two-dimensional same layer or plane. Therefore, the following basic assumptions and analysis conditions in this study were established for deriving a predictor of pedestrian volume in vertical and horizontal spaces of a building. The basic premise of space analysis is not to address the relationship between the pedestrian volume and the spatial structure itself but to the properties of spatial structure connection that human beings experience. The analysis conditions in three-dimensional spaces are as follows : 1) Measurement units should be standardized on the same scale, and 2) The connection characteristics between spaces should influence the accessibility of human beings. In this regard, a factor of walking energy has the attributes to analyze the connection of vertical and horizontal spaces and satisfies the analysis conditions presented in this study. This study has two implications. First, this study has shown how to quantitatively calculate the walking energy after a factor of walking energy was derived to predict the pedestrian volume in vertical and horizontal spaces. Second, the method of calculating the walking energy can be applied to the weights of the ERAM model, which provided the theoretical basis for future studies to predict the pedestrian volume of vertical and horizontal spaces in a building.

The Crystal Structure of Licarin-B $(C_{20}H_{20}O_4)$, A Component of the Seeds of Myristica fragrans

  • Kim, Yang-Bae;Park, Il-Yeong;Shin, Kuk-Hyun
    • Archives of Pharmacal Research
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 1991
  • The crystal structure of licarin-B, a component of Myristicae Semen was determined by single crystal X-ray diffraction analysis. Crystal of the compound, which was recrystallized from the mixture of hexane and ether, is monoclinic with a=12.740(1), b=7.219(1), c=9.284(1) ${\AA}$, ${\beta}=94.75(1)^{\circ}$, $D_x=1.26$, $D_m=1.27\;g/cm^3$, space group P21, and Z=2. The structure was solved by direct method and refined by least-squares procedure to the final R value of 0.040 for 1532 independent reflections ${F{\ge}3{\sigma}(F)}$. The compound is a dimeric phenylpropanoid, and belongs to the neolignan analogues. The molecules are arranged along with the screw axis. The intermolecular contacts appear to be the normal van der Waals' forces.

  • PDF

A Study on the Industrial Type SFF System using SLS Proecss (SLS 공정을 이용한 산업용 임의형상 제작시스템에 관한 연구)

  • 김동수;임현의;김성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1299-1302
    • /
    • 2004
  • A real object duplication system (RODS), including three dimensional (3D) scanner and solid freeform fabrication system (SFFS), is a device to make three-dimensional objects directly from the drawing or photo data. A Selective Multi-Laser Sintering (SMLS) process designed in this paper is by which computer images received using 3D scanner are built up from polymer powder on building room of large size using dual laser at industrial type SFF system. Using the process can rapidly produce real object duplication components of industrial type such as cylinder, engine block, chassis of automobile, etc. In this paper, the industrial type SFF system using SMLS process is manufactured and the system is satisfied with high precision and high speed processing technique. To research characteristics of each part for theindustrial type SFF system, a structure and thermal analysis and test of each part is carried out. Also, to achievement of high performance for industrial type SFF system, design and fabrication for the structure, heater, nitrogen supply, laser and control part are carried out.

  • PDF

3D-QSAR Analysis of Antidepressant, Tricyclic Isoxazole Analogues against para-Chloroamphetamine-induced Excitation (para-Chloroamphetamine에 유도된 흥분작용에 대한 항우울 약물 Tricyclic Isoxazole 유도체들의 3D-QSAR 분석)

  • Choi, Min-Sung;Sung, Nack-Do;Myung, Pyung-Keun
    • YAKHAK HOEJI
    • /
    • v.55 no.2
    • /
    • pp.91-97
    • /
    • 2011
  • To search a new anti-depressant agents against para-chloroamphetamine-induced excitation, three dimensional quantitative-structure relationships (3D-QSAR) models between structure of 3a,4-dihydro-3H-[1]-benzopyronao[4,3]isoxazoles (1-30) and thieir inhibitory activity against para-chloroamphetamine-induced excitation were performed and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. From these basis on the findings, the optimized CoMSIA-2F model ($q^2$=0.793 and $r^2$=0.952) showed the best statistical results. And also, it is found that the para-chloroamphetamine inhibitory activity from the optimized CoMSIA-2F model was dependent on steric field (35.2%) and electrostatic field (64.8%) of tricyclic isoxazoles. Particularly, it is predicted that the inhibitory activity against para-chloroamphetamine-induced excitation will be able to increase by the designed compounds from the CoMSIA-2F model.

Dynamic Infinite Elements for 3D Soil-Structure Interaction Analysis (3차원 지반-구조물 상호작용해석을 위한 동적 무한요소)

  • Seo Choon-Kyo;Yun Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.521-528
    • /
    • 2005
  • In this paper, three dimensional dynamic infinite elements are developed for the soil-structure interaction analysis in multi-layered halfspace. For the efficient discretization of 3-D for field regions, five types of dynamic infinite elements are developed. They are the horizontal, vertical, horizontal comer, vertical comer and horizontal/vertical corner infinite elements. The shape functions of the infinite elements are based on approximate expressions of analytical solutions of propagating waves in the infinite region. Numerical example analyses are presented for compliances of rigid circular and square plates to demonstrate the effectiveness of the proposed infinite elements.

  • PDF

High-Efficiency Cooling System Using Additive Manufacturing

  • Yeong-Jin Woo;Dong-Ho Nam;Seok-Rok Lee;Eun-Ah Kim;Woo-Jin Lee;Dong-Yeol Yang;Ji-Hun Yu;Yong-Ho Park;Hak-Sung Lee
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.3
    • /
    • pp.689-693
    • /
    • 2021
  • In this study, we propose a cooling structure manufactured using a specialized three-dimensional (3D) printing design method. A cooling performance test system with complex geometry that used a thermoelectric module was manufactured using metal 3D printing. A test model was constructed by applying additive manufacturing simulation and computational fluid analysis techniques, and the correlation between each element and cooling efficiency was examined. In this study, the evaluation was conducted using a thermoelectric module base cooling efficiency measurement system. The contents were compared and analyzed by predicting the manufacturing possibility and cooling efficiency, through additive manufacturing simulation and computational fluid analysis techniques, respectively.