• 제목/요약/키워드: Three-axial

검색결과 1,413건 처리시간 0.03초

부분분사에 의한 터빈익형에서의 작동력 변화에 관한 연구 (A Study of Operating Forces on a Partially Admitted Turbine Blade)

  • 조종현;최형준;정대헌;임용훈;조수용
    • 한국항공우주학회지
    • /
    • 제38권9호
    • /
    • pp.890-899
    • /
    • 2010
  • 직선형 캐스케이드 장치에서 부분분사를 받는 터빈의 작동력을 분석하기 위하여 실험 연구를 수행하였으며, 익형은 축류형으로 코드가 200mm 이다. 분사노즐은 사각형 노즐로서 $200mm{\times}200mm$ 이며, 실험은 코드기준으로 레이놀드수 $3{\times}10^5$에서 수행되었다. 익형을 회전방향으로 이동하면서 정상상태일 때 각각의 위치에 대해 익형에 형성되는 회전방향의 힘과 축방향의 힘을 측정하였다. 탈설계 성능을 측정하기 위하여 노즐의 설치각을 $58^{\circ}$, $65^{\circ}$$72^{\circ}$로 변경하면서, 노즐의 설치각 변화에 대한 익형의 작동력 특성을 파악하였다. 또한 현절비를 1.25, 1.38, 1.67로 변경하면서 현절비 변화에 의한 익형의 작동력 변화를 측정하였다. 실험의 결과에서 최대 회전력의 크기는 현절비의 감소에 따라 증가하였으며, 노즐의 설치각이 감소하게 될 때 회전력은 증가하였다. 축방향의 힘은 노즐 설치각이 감소하면 증가하였으며, 큰 노즐 설치각에서는 분사영역에서 역축방향의 힘이 측정되었다.

단부 경계조건을 고려한 매설관의 동적응답 해석 (II) (Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (II))

  • 이병길;박병호;정진호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.328-337
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. In order to investigate the effect of the boundary end conditions for the dynamic responses of the buried pipeline, we have devised a computer program to find the solutions of the formulae on the dynamic responses (displacements, axial strains, and bending strains) under the various boundary end conditions considered in this study. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. We have observed a resonance when the mode wavelength matches the wavelength of the seismic wave, where the mode number(k) of resonance for the axial direction is found to be $\overline{\omega}/{\pi}V+1/2$ for the fixed-free ends, $\overline{\omega}/{\pi}V+1$ for the free ends, and $\overline{\omega}/{\pi}V$ for the fixed ends, respectively. By adding 10 more modes to the mode number(k) of resonance, we were able to study all the dynamic responses of the buried pipeline for the axial direction. On the other hand, we have not been able to observe a resonance in the analysis for the transverse direction, because the dynamic responses are found to vanish after the seventh mode. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF

잉여좌표계를 이용한 3-폴 하이브리드형 자기베어링 제어 (Control of a Three-pole Hybrid Active Magnetic Bearing using Redundant Coordinates)

  • 박상현;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1375-1381
    • /
    • 2007
  • In this paper, we propose a linear modeling and identical PD controller design scheme for the three-pole hybrid-type AMB recently developed in the laboratory, which consists of three permanent magnets, providing bias flux, three Hall diodes, measuring rotor displacements, and ring type permanent magnet bearing, stabilizing in axial and tilting directions. Along the three physical coordinates formed by three poles, we introduce the redundant coordinate system and three identical decoupled controllers to construct linear model. The experiments are also carried out in order to verify the effectiveness of proposed controller in stabilizing the transient and steady state response of rotor.

  • PDF

3차원 Bending Machine 설계 및 개발에 관한 연구 (A Study on the Design and Development of Three Dimensional Bending Machine)

  • 이춘만;임상헌;김현진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1448-1451
    • /
    • 2004
  • This study is concerned about the design and development of three dimensional bending machine. The purpose of this study is design and development of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. Based on this study, the three dimensional bending machine was developed. In order to evaluate a performance and reliability of the developed three dimensional bending machine, we used laser interferometer and three axial measuring system.

  • PDF

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF

이방성 암석에 대한 탄성계수의 실험적 결정 (Determination of Elastic Constants of Transversely Isotropic Rocks)

  • 김호영
    • 터널과지하공간
    • /
    • 제5권4호
    • /
    • pp.318-322
    • /
    • 1995
  • For transversely isotropic rocks such as schist, shale, etc, a method to determine the anisotropic elastic constants was proposed. Theoretically, equations of elastic constants E1, E2, and G2 can be derived from the measured strains in arbitrary three directions. If we attach three strain gages in accordance with the directons of anisotropy on the rock specimen under uni-axial compression, anisotropic elastic constants can be determined by these equations. With this method, the degree of anisotropy of transversely isotropic rocks will be easily evaluated by simple laboratory test.

  • PDF

난류상태로 운전되는 저어널베어링에서의 $kappa-varepsilon$ 모델을 이용한 3-차원 THD해석 (Three-Dimensional Thermohydrodynamic Analysis of Journal Bearings Operating in Turbulent Region Using $kappa-varepsilon$ Model)

  • 이득우;김경웅
    • Tribology and Lubricants
    • /
    • 제3권1호
    • /
    • pp.39-46
    • /
    • 1987
  • Frictional loss in turbulent regime is abnormally increased compared with in laminar regime. Thus the consideration of temperature rise across fluid film is significant in analysis and conventional isothermal theory loses its usefulness for performance prediction. This paper proposes to the three-dimensional thermohydrodynamic analysis of finite journal bearings operating under turbulent condition using two-equation model($\kappa-\varepsilon$ model) proposed by Hassid & Poreh. The equations are solved numerically by finite difference method. We make the analysis applicable even at large eccentricity when back flow of the lubricants occurs and axial flow is no longer ignored compared to circumferential flow.

힘다각형선도법을 이용한 세롤에 의한 파워스피닝공정의 해석 (Analysis of the Three-Roll Power Spinning Process by using the Method of Force Polygon Diagram)

  • 유동진
    • 한국정밀공학회지
    • /
    • 제2권3호
    • /
    • pp.47-58
    • /
    • 1985
  • The study is concerned with the analysis of the required loads and torque in the Three-Roll Power Spinning Process by using the Method of Force Polygon Diagram. Experiments are carried out using pure lead billets at room temperature. The radial force, the axial force and the torque occurring during the process are calculated theoretically and are compared with the experimental data. An approximate load distribution is known by the Force Polygon Diagram.

  • PDF

Three Dimensional Shape Measurement of a Micro Fresnel Lens with In-line Phase-shifting Digital Holographic Microscopy

  • Kang, Jeon-Woong;Hong, Chung-Ki
    • Journal of the Optical Society of Korea
    • /
    • 제10권4호
    • /
    • pp.178-183
    • /
    • 2006
  • An in-line phase-shifting digital holographic microscopy system was constructed by inserting a conventional microscope in the object arm of a Mach-Zehnder interferometer. It was used to measure the three dimensional shape of a micro Fresnel lens. It was also shown that both the lateral and the axial resolutions of the in-line phase-shifting system using a self-calibration algorithm were superior to those of the best off-axis system.

Multi-Detector Row CT를 이용한 중심부 기도 질환의 평가 (Multi-Detector Row CT of the Central Airway Disease)

  • 강은영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제55권3호
    • /
    • pp.239-249
    • /
    • 2003
  • Multi-detector row CT (MDCT) provides faster speed, longer coverage in conjunction with thin slices, improved spatial resolution, and ability to produce high quality muliplanar and three-dimensional (3D) images. MDCT has revolutionized the non-invasive evaluation of the central airways. Simultaneous display of axial, multiplanar, and 3D images raises precision and accuracy of the radiologic diagnosis of central airway disease. This article introduces central airway imaging with MDCT emphasizing on the emerging role of multiplanar and 3D reconstruction.