• Title/Summary/Keyword: Three-Point Algorithm

Search Result 535, Processing Time 0.03 seconds

Handwritten Numerals Recognition Using an Ant-Miner Algorithm

  • Phokharatkul, Pisit;Phaiboon, Supachai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1031-1033
    • /
    • 2005
  • This paper presents a system of handwritten numerals recognition, which is based on Ant-miner algorithm (data mining based on Ant colony optimization). At the beginning, three distinct fractures (also called attributes) of each numeral are extracted. The attributes are Loop zones, End points, and Feature codes. After these data are extracted, the attributes are in the form of attribute = value (eg. End point10 = true). The extraction is started by dividing the numeral into 12 zones. The numbers 1-12 are referenced for each zone. The possible values of Loop zone attribute in each zone are "true" and "false". The meaning of "true" is that the zone contains the loop of the numeral. The Endpoint attribute being "true" means that this zone contains the end point of the numeral. There are 24 attributes now. The Feature code attribute tells us how many lines of a numeral are passed by the referenced line. There are 7 referenced lines used in this experiment. The total attributes are 31. All attributes are used for construction of the classification rules by the Ant-miner algorithm in order to classify 10 numerals. The Ant-miner algorithm is adapted with a little change in this experiment for a better recognition rate. The results showed the system can recognize all of the training set (a thousand items of data from 50 people). When the unseen data is tested from 10 people, the recognition rate is 98 %.

  • PDF

A design of Floating Point Arithmetic Unit for Geometry Operation of Mobile 3D Graphic Processor (모바일 3D 그래픽 프로세서의 지오메트리 연산을 위한 부동 소수점 연산기 구현)

  • Lee, Jee-Myong;Lee, Chan-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.711-714
    • /
    • 2005
  • We propose floating point arithmetic units for geometry operation of mobile 3D graphic processor. The proposed arithmetic units conform to the single precision format of IEEE standard 754-1985 that is a standard of floating point arithmetic. The rounding algorithm applies the nearest toward zero form. The proposed adder/subtraction unit and multiplier have one clock cycle latency, and the inversion unit has three clock cycle latency. We estimate the required numbers of arithmetic operation for Viewing transformation. The first stage of geometry operation is composed with translation, rotation and scaling operation. The translation operation requires three addition and the rotation operation needs three addition and six multiplication. The scaling operation requires three multiplication. The viewing transformation is performed in 15 clock cycles. If the adder and the multiplier have their own in/out ports, the viewing transformation can be done in 9 clock cycles. The error margin of proposed arithmetic units is smaller than $10^{-5}$ that is the request in the OpenGL standard. The proposed arithmetic units carry out operations in 100MHz clock frequency.

  • PDF

Development of position correction system of door mounting robot based on point measure: Part I-Algorithm (특정점 측정에 근거한 도어 장착 로봇의 위치 보정 시스템 개발: Part I-보정 알고리즘)

  • Kim, Mi Kyung;Kang, Hee Jun;Kim, Sang Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.34-41
    • /
    • 1996
  • This work deals with finding a suitable position correction algorithm of industrial robot based on measuring particular points, which calculates two dimensional correction quantities and the must allow visually acceptable door-chassis assembly task. Three optimizing algorithms corresponding to three differ- ent error based performance indices are compared and selected to the best one, in terms of the predefined total uniformity, line uniformity and computational time. The selected algorithm(Total Error Minimization) is implemented for a simple door-chassis model to show its effectiveness.

  • PDF

State Of Polarization Tracking Algorithm using Three-Point Measurement Technique for Polarization Mode Dispersion Compensation (펀광모드분산 보상을 위한 세 점 측정 방식의 빛의 편광상태 추적 알고리즘)

  • 송홍석;정현수;신서용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2B
    • /
    • pp.171-177
    • /
    • 2002
  • As speed and capacity of optical communication system increase dramatically, polarization-mode-dispersion compensation(PMDC) becomes a hot issue in these days. In this paper, we introduce a new state-of-polarization (SOP) tracking algorithm that can be used in a PMDC system. The new SOP tracking algorithm is also based on optical heterodyne coherent detection technique like the previous algorithm that we have reported before. However, unlike the previous algorithm, the new algorithm requires only three times of measurement in any circumstances to find the exact SOP information so that it can effectively be applied to PMDC system where very fast and stable operation is indispensible.

A Study on the Intelligent High Voltage Switchboard for Custormer (고압 수용가용 배전반의 intelligent화 연구)

  • Byun, Young-Bok;Joe, Ki-Youn;Koo, Heun-Hoi
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.444-446
    • /
    • 1994
  • This paper describes the design of a digital multifunction controller for the intelligent high voltage customer switchboard and proposes a relaying algorithm for high impedance faults using back-propagation neural network. The hardware design uses the three microprocessors and global memory architecture to achive real time operation and control 4 feeders. The controller uses a 64-point radix-4 DIF FFT algorithm to measure the harmonic and relay parameters. Synthesized fault current waveforms are used to train and test the back - propagation network.

  • PDF

An algorithm of detecting changed intervals with step-type shape in motor's speed response data (모터 스텝 응답에서 변동 구간 검출 기법)

  • Kim, Tae-Eun;Lee, Hai-Young
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.309-313
    • /
    • 2004
  • This paper presents an algorithm of detecting changed intervals with step-type shape in motor's speed response data. The proposed method is composed of 4 parts such as noise filtering, decision making of reference value's change, finding entrance point of steady state and detecting changed intervals. According to simulation results for three cases, we see that changed intervals can be found well.

  • PDF

POLYNOMIAL CONVERGENCE OF PRIMAL-DUAL ALGORITHMS FOR SDLCP BASED ON THE M-Z FAMILY OF DIRECTIONS

  • Chen, Feixiang
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.127-133
    • /
    • 2012
  • We establish the polynomial convergence of a new class of path-following methods for SDLCP whose search directions belong to the class of directions introduced by Monteiro [3]. We show that the polynomial iteration-complexity bounds of the well known algorithms for linear programming, namely the short-step path-following algorithm of Kojima et al. and Monteiro and Alder, carry over to the context of SDLCP.

A new algorithm for detecting the collision of moving objects

  • Hong, S.M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1014-1020
    • /
    • 1990
  • Iterative algorithms for detecting the collision of convex objects whose motion is characterized by a path in configuration space are described. They use as an essential substep the computation of the distance between the two objects. When the objects are polytopes in either two or three dimensional space, an algorithm is given which terminates in a finite number of iterations. It determines either that no collision occurs or the first collision point on the path. Extensive numerical experiments for practical problems show that the computational time is short and grows only linearly in the total number of vertices of the two polytopes.

  • PDF

Tuning Rules of the PID Controller Based on Genetic Algorithms (유전알고리즘에 기초한 PID 제어기의 동조규칙)

  • Kim, Do-Eung;Jin, Gang-Gyoo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2167-2170
    • /
    • 2002
  • In this paper, model-based tuning rules of the PID controller are proposed incorporating with genetic algorithms. Three sets of optimal PID parameters for set-point tracking are obtained based on the first-order time delay model and a genetic algorithm as a optimization tool which minimizes performance indices(IAE, ISE and ITAE). Then tuning rules are derived using the tuned parameter sets, potential rule models and a genetic algorithm. Simulation is carried out to verify the effectiveness of the proposed rules.

  • PDF

Structural Optimization using Improved Higher-order Convex Approximation (개선된 고차 Convex 근사화를 이용한 구조최적설계)

  • 조효남;민대홍;김성헌
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.271-278
    • /
    • 2002
  • Structural optimization using improved higer-order convex approximation is proposed in this paper. The proposed method is a generalization of the convex approximation method. The order of the approximation function for each constraint is automatically adjusted in the optimization process. And also the order of each design variable is differently adjusted. This self-adjusted capability makes the approximate constraint values conservative enough to maintain the optimum design point of the approximate problem in feasible region. The efficiency of proposed algorithm, compared with conventional algorithm is successfully demonstrated in the Three-bar Truss example.

  • PDF