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POLYNOMIAL CONVERGENCE OF PRIMAL-DUAL

ALGORITHMS FOR SDLCP BASED ON THE M-Z FAMILY OF

DIRECTIONS†

FEIXIANG CHEN

Abstract. We establish the polynomial convergence of a new class of
path-following methods for SDLCP whose search directions belong to the
class of directions introduced by Monteiro [3]. We show that the polyno-
mial iteration-complexity bounds of the well known algorithms for linear
programming, namely the short-step path-following algorithm of Kojima
et al. and Monteiro and Alder, carry over to the context of SDLCP.
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1. Introduction

Several authors have discussed generalizations of interior-point algorithms for
linear programming (LP) to the context of semidefinite programming (SDP).
The landmark work in this direction is due to Nesterov and Nemirovskii [1],
where a general approach for using interior-point algorithms for solving convex
programs is proposed, based on the notion of self-concordant functions. Since
then many authors have proposed interior-point algorithms for solving the SDP
problems and SDLCP, including Kojima, Shida and Shindoh [2], Monteiro [3,4],
Monteiro and Zhang [5,6], and Zhang [7].

2. Notation and terminology

The set of all symmetric n×n matrices is denoted by Sn. For Q ∈ Sn, Q º 0
means Q is positive semidefinite and Q Â 0 means Q is positive definite. The
inner product between them in the vector space Rm×n is defined as P •Q ≡ Tr
PTQ. The Euclidean norm and its associated operator norm are both denoted by
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‖◦‖; The Frobenius norm of Q ∈ Rn×n is ‖Q‖F ≡ (Q•Q)1/2. For Q,R ∈ Rn×n.
Sn
+ and Sn

++ denote the set of all matrices in Sn which are positive semidefinite
and positive definite, respectively.

3. The SDLCP problem and preliminary discussion

This subsection describes the SDLCP problem and the corresponding assump-
tions. It also contains some notations and terminology that are used throughout
our presentation. Semidefinite linear complementarity problems (SDLCP) de-
termines a matrix pair (X,S) ∈ Sn × Sn satisfying

(X,S) ∈ F , X º 0, Y º 0, X • Y = 0. (1)

Here F is an n(n+1)/2-dimensional affine subspace of Sn×Sn. We call (X,S) ∈
F with X º 0 and Y º 0 a feasible solution of the SDLCP (1) and (X,S) ∈ F
with X Â 0 and Y Â 0 an interior feasible solution of the SDLCP (1) denoted
by F+ and F++, respectively.

Throughout our presentation, we assume that
[A1] F is monotone, that is (X1 −X2) • (S1 −S2) ≥ 0 for any (X1, S1) ∈ F and

(X2, S2) ∈ F .
[A2] F++ is nonempty.

Under assumptions [A1] and [A2], it is known that problem (1) has at least
one solution. Since for (X,S) ∈ Sn

+ × Sn
+, we have X • Y = 0 if and only if

XY = 0, problem (1) is equivalent to find a pair (X,S) such that

(X,S) ∈ F+, XS = 0.

It has been shown by Kojima, Shindoh and Hara [11] that the perturbed system

(X,S) ∈ F+, XS = µI. (2)

has a unique solution in F+, denoted by (Xµ, Sµ) , for every µ > 0, and lim
µ→0

(Xµ, Sµ)

exists and is a solution of (1). The set {(Xµ, Sµ) : µ > 0} is called the central
path associated with (1) and plays a fundamental role in the development of
interior point algorithms for solving SDP and SDCLP. Using the square root
X1/2, (2) can also be alternatively expressed in the following symmetric form:

(X,S) ∈ F+, X1/2SX1/2 = µI
(
or, S1/2XS1/2 = µI

)
.

The path-following algorithms studied in this paper are all based on the following
centrality measures of a point for (X,S) ∈ F+ :

NF (µ, γ) =
∥∥∥X1/2SX1/2 − µI

∥∥∥
F
≤ γµ.

Path following algorithms for solving (1) are based on the idea of approximately
tracing the central path. Application of Newton method for computing the

solution of (2) with µ = µ̂ leads to the Newton search direction
(
∆̂X, ∆̂S

)
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which solves the linear system

X∆̂S + ∆̂XS = µ̂I −XS,
(
X + ∆̂X,S + ∆̂S

)
∈ F . (3)

This system does not always have a solution. To overcome this bottleneck, if we
adapt the M-Z search directions to the monotone SDLCP, we can describe it as
a solution of the system of equations:

X−1/2(X∆S+∆XS)X1/2+X1/2(∆SX+S∆X)X−1/2 = 2
(
µ̂I −X1/2SX1/2

)
. (4)

Here (X,S) ∈ F++ denotes an iterate and µ = X • S/n. It was shown in paper
[8] that the system (4) of equations above has the unique solution (∆X,∆S) ∈
Sn × Sn.

Theorem 3.1. System (4) has a unique solution.

We let throughout this section that (X,S) ∈ F++ and that (∆X,∆S) is a
solution of system (4) with µ̂ = σµ for some µ > 0 and σ ∈ [0, 1]. Moreover, we
define for every α ∈ R,

X(α) ≡ X + α∆X, S(α) ≡ S + α∆S, (5)

µ(α) ≡ (1− α+ σα)µ. (6)

Lemma 3.2. For every α ∈ R, we have

X(α)S(α)− µ(α)I = (1− α)(XS − µI) + α(XS − σµI) + α(X∆S +∆XS) + α2∆X∆S. (7)

Proof. Follows immediately from (5), (6) and (4) with µ̂ = σµ. ¤
For a nonsingular matrix P ∈ Rn×n, consider the following operator HP :

Rn×n → Sn defined as

HP (M) ≡ 1

2

[
PMP−1 + (PMP−1)T

]
, ∀ M ∈ Rn×n.

Lemma 3.3. For every α ∈ [0, 1], we have

‖HX−1/2 [X(α)S(α)− µ(α)I]‖
F
≤ (1− α)

∥∥∥X1/2SX1/2 − µI
∥∥∥
F
+ α2δxδs/2µ, (8)

where

δx = µ
∥∥∥X−1/2∆XX−1/2

∥∥∥
F
, δs =

∥∥∥X1/2∆SX1/2
∥∥∥
F
. (9)

Proof. Using (7), we can obtain

2HX−1/2 [X(α)S(α)− µ(α)I]

=2(1− α)
(
X1/2SX1/2 − µI

)
+ 2α

(
X1/2SX1/2 − σµI

)

+ α
[
X−1/2(X∆S +∆XS)X1/2 +X1/2(∆SX + S∆X)X−1/2

]

+ α2
(
X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2

)

=2(1− α)
(
X1/2SX1/2 − µI

)
+ α2

(
X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2

)
.

Then take Frobenius norm on both sides, we can prove the (8) holds. ¤
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Lemma 3.4. Let (X,S) ∈ F++ be such that
∥∥X1/2SX1/2 − µI

∥∥ ≤ µγ for some
γ ∈ [0, 1) and µ > 0. Suppose that (∆X,∆S) ∈ Sn×n×Sn×n is a solution of (4)
for W ∈ Rn×n, where W = σµI −X1/2SX1/2. Let δx = µ

∥∥X−1/2∆XX−1/2
∥∥
F

and δs =
∥∥X1/2∆SX1/2

∥∥
F
. Then,

δxδs ≤ 1

2

(
δ2x + δ2s

) ≤ ‖W‖2F
2(1− γ)2

.

Proof. We let W = HX−1/2 [X∆S + ∆XS]. Using (4) and simple algebraic
manipulation, we can obtain

W =X1/2∆SX1/2 + µX−1/2∆XX−1/2 +
1

2
X−1/2∆XX−1/2(X1/2SX1/2 − µI)

+
1

2
(X1/2SX1/2 − µI)X−1/2∆XX−1/2,

from which it follows that

‖W‖F ≥
∥∥∥X1/2∆SX1/2 + µX−1/2∆XX−1/2

∥∥∥
F

−
∥∥∥X1/2SX1/2 − µI

∥∥∥
∥∥∥X−1/2∆XX−1/2

∥∥∥
F

≥
(∥∥∥X1/2∆SX1/2

∥∥∥
2

F
+ µ2

∥∥∥X−1/2∆XX−1/2
∥∥∥
2

F

)1/2

− γµδx/µ

≥
√
δ2x + δ2s − γδx ≥ (1− γ)

√
δ2x + δ2s ,

where the second inequality follows from the assumption that
∥∥X1/2SX1/2 − µI

∥∥
≤ µγ and the fact that (X−1/2∆XX−1/2) • (X1/2∆SX1/2) = ∆X • ∆S ≥ 0,
due to the monotonicity of F . The result now follows trivially from the last
inequality. ¤

Lemma 3.5. Suppose that (X,S) ∈ NF (µ, γ) for some γ ∈ (0, 1) and let
(∆X,∆S) ∈ Sn×n × Sn×n be the solution of (4). Then,

‖HX−1/2 [X(α)S(α)− µ(α)I]‖F ≤
{
(1− α)γ + α2n(1− σ)2 + γ2

4(1− γ)2

}
µ.

Proof. Follows immediately from (8), the assumption that (X,S) ∈ NF (µ, γ)
and Lemma 2.3, we can obtain

‖HX−1/2 [X(α)S(α)− µ(α)I]‖F
≤
{
(1− α)γ + α2 ‖σµI −X1/2SX1/2‖2F

4(1− γ)2µ2

}
µ

=

{
(1− α)γ + α2

‖(σ − 1)µI‖2F +
∥∥µI −X1/2SX1/2

∥∥2
F

4(1− γ)2µ2

}
µ

≤
{
(1− α)γ + α2n(σ − 1)2 + γ2

4(1− γ)2

}
µ.
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The equality holds from the fact (X1/2SX1/2 − µI) • I = 0, then we complete
the proof. ¤

4. The short-step path following algorithm

In this section, we analyze the polynomial convergence of a short-step path-
following algorithm based on the ‖ ◦ ‖F norm neighborhood and the M-Z family
of search directions.

Algorithm-I
Choose constants γ, δ ∈ (0, 1) satisfying the conditions of and let σ = 1−δ/n.
Let (X0, S0) ∈ F++ and µ0 = X0 • S0/n be such that (X0, S0) ∈ NF (µ, γ)
and set k = 0.
Repeat until µµk ≤ εµ0, do
step1. Compute the solution (∆Xk,∆Sk) of system (4) with (X,S) = (Xk, Sk)

and µ̂ = σµk;
step2. Set a (Xk+1, Sk+1) ≡ (Xk, Sk) + (∆Xk,∆Sk) and µk+1 = σµk;
step3. Increment k by 1.
End
We start by stating two technical results. The first one is due to Monteiro

(see Lemma 2.1 of [4])and plays a crucial role in our analysis.

Lemma 4.1. Suppose that (X,S) ∈ Sn
++ × Sn

++ and M ∈ Rn×n is a non-

singular matrix. Then, for every µ ∈ R, we have
∥∥X1/2SX1/2 − µI

∥∥
F

≤
‖HM(XS − µI)‖F , with equality holding if MXSM−1 ∈ Sn.

Lemma 4.2. Suppose V,Q ∈ Rn×n be given, and M is nonsingular which
satisfying

‖HM(V )− I‖ < 1, (10)

then, the matrix V is nonsingular.

Proof. Define M ≡ MVM−1/2. Condition (10) implies that M +MT Â 0, and
this clearly implies that M is nonsingular . Hence, V is also nonsingular. ¤

When the constant Γ defined in (11) is such that Γ ≤ γ, the theorem below
implies that the sequence

{(
Xk, Sk

)}
generated by Algorithm-I is contained in

the neighborhood NF (µ
k, γ).

Theorem 4.3. Suppose γ ∈ (0, 1) and δ ∈ [0,
√
n) be constants satisfying

Γ ≡ γ2 + δ2

4(1− γ)2

(
1− δ√

n

)−1

≤ 1. (11)

Suppose that (X,S) ∈ NF (µ, γ) for some µ > 0, and that (∆X, ,∆S) denote the
solution of system (4) with µ̂ = σµ and σ = 1− δ/

√
n. Then,

(1) (X̃, S̃) = (X +∆X,S +∆S) ∈ NF (σµ,Γ); (2) X̃ • S̃ = (1− δ/
√
n)X • S.
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Proof. It follows from Lemma 2.5, the definition of σ and [11] that for every
α ∈ [0, 1],

‖HX−1/2 [X(α)S(α)− µ(α)I]‖F ≤
{
(1− α)γ + α2n(σ − 1)2 + γ2

4(1− γ)2

}
µ.

≤
{
(1− α)γ + α

δ2 + γ2

4(1− γ)2

}
µ.

=
{
(1− α)γ + αΓ(1− δ/

√
n)
}
µ

= {(1− α)γ + σΓα}µ,
and hence, in view of (6) and (11), we have

∥∥∥∥HX−1/2

[
X(α)S(α)

µ(α)

]
− I

∥∥∥∥
F

≤ (1− α)γ + σΓα

1− α+ σα
≤ max{γ,Γ} < 1.

By Lemma 3.2, this implies that X(α)S(α) is nonsingular for every α ∈ (0, 1].
Hence, X(α) and S(α) are also nonsingular for every α ∈ (0, 1]. Using the fact
that (X,S) ∈ F++, (X +∆X,S +∆S) ∈ F and a simple continuity argument,
we see (X(α), S(α)) ∈ F++ ⊆ Sn

++ ×Sn
++ for every α ∈ (0, 1]. Applying Lemma

3.1 with (X,S) = (X(α), S(α)) and M = X−1/2, we conclude that for every
α ∈ (0, 1],

∥∥∥X(α)1/2S(α)X(α)1/2 − µ(α)I
∥∥∥
F
≤‖HX−1/2 [X(α)S(α)− µ(α)I]‖F .

≤
∥∥∥X−1/2X(α)S(α)X1/2 − µ(α)I

∥∥∥
F
.

≤{(1− α)γ + σΓα}µ.
Setting α = 1 in the last relation and using the fact that (X(1), S(1)) ∈ F++

together with (5) and (6), we conclude that (X(1), S(1)) ≡ (X+∆X,S+∆S) ∈
NF (σµ,Γ). Statement (2) follows from (6) with α = 1 and the definition of
σ. ¤

Theorem 4.4. Suppose that γ and δ are constants in (0, 1) satisfying (11).
Then, every iterate (Xk, Sk) generated by Algorithm-I is in NF (µ

k, γ) and sat-
isfies

Xk • Sk ≤ (1− δ/
√
n)k(X0 • S0). (12)

Moveover, Algorithm-I terminates in at most O (√
n log ε−1

)
iterations.

Proof. The proof that every iterate (Xk, Sk) is in NF (µ
k, γ) follows immediately

from Theorem 3.3 and a simple argument. Relation (12) follows from the fact
that µk = σkµ0. ¤
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