• Title/Summary/Keyword: Three-Dimensional Velocity Distribution

Search Result 190, Processing Time 0.031 seconds

Hydroelastic Response Analysis of TLPs in Regular Waves (규칙파 중 TLP의 유탄성응답 해석)

  • Ha, Y.R.;Lee, S.C.;Goo, J.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.48-54
    • /
    • 2010
  • An improved numerical scheme, to which the hydroelastic method is adapted, is introduced for predicting the motion and structural responses of tension leg platforms(TLPs) in regular waves. The numerical approach in this work is based on a combination of the three dimensional source distribution method and the finite element method. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural response analysis. The drag forces on the submerged slender members, which are proportional to the square of relative velocity, are included in order to estimate the responses of members with better accuracy. Comparisons with other results verify the works in this paper.

A Numerical Study on Air Distribution and Flow in the Passenger Cabin of a High-Speed Electric Train (고속전철 객실의 공기 분배 및 기류에 관한 수치해석적 연구)

  • Myong, Hyon-Kook;Yoo, Kyung-Hoon;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.27-36
    • /
    • 2019
  • Numerical analysis has been conducted on three-dimensional airflow distribution in the passenger cabin of a high-speed electric train. The types of air distribution systems investigated in the present study were those of TGV and Shinkansen. The Reynolds-averaged Navier-Stokes equations governing the mass and momentum conservations of the airflow in the cabin were solved by using a finite volume method, which are coupled with the standard $k-{\varepsilon}$ turbulence model equations. Predicted velocity distributions were presented on several selected planes in the passenger cabin. The present three-dimensional simulations were found to show the overall features of the airflow in the passenger cabin fairly well. In particular, it was shown that the type of air distribution for Shinkansen was more suitable for a non-smoking cabin than that for TGV.

A Study on the Three Dimensional Statistical Turbulent Flow Characteristics Around a Small-Sized Axial Fan for Refrigerator (냉장고용 소형 축류홴의 통계학적 3차원 난류유동 특성에 관한 연구)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.819-828
    • /
    • 2001
  • The operating point of a small-sized axial fan is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the ideal design point $\phi$=0.25, which is equivalent to the maximum total efficiency point, by using three dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSAs, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is used to supply particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that the streamwise and the tangential components exist in a predominant manner, while the radial component has a small scale distribution and shows the inflection which its flow direction is inward or outward. Moreover, the turbulent intensity profiles show that the radial component exists the most greatly among turbulent energies.

A Similarity of the Velocity Profiles According to Water Depth in Partially Filled Circular Pipe Flows (비만관 상태의 원형관로에서 수위에 따른 속도분포의 상사성)

  • Yoon, Ji-In;Kim, Young-Bae;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.28-32
    • /
    • 2008
  • Contrary to the flow rate in fully filled pipe flows, the flow rate in partially filled pipe flows is significantly influenced by the variation of water level, channel slop, and so on. The major difference in these two flows results from the existence of a free surface. To make it clear, in the present study, a similarity of the velocity profile in a partially filled circular pipe has been investigated according to the water level. A particle image velocimetry (PIV) technique was applied to measure the three-dimensional velocity profiles. As a result, there is found a similarity of the velocity profile near the central region. However, near the side wall, the similarity is broken due to the interaction between the wall and the free surface.

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.

A Study on the Optimum Design of Air-Conditioning Duct with Multiple Diffusers (다수의 취출구를 갖는 A/C덕트의 최적설계에 관한 연구)

  • 김민호;이대훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.98-106
    • /
    • 2002
  • The airflow characteristics of an air-conditioning duct with multiple diffusers were investigated through one-dimensional analysis, CFD simulation and experimental measurement. One-dimensional program based on Bernoulli's equation and minor loss equations was developed in order to evaluate the air distribution rate at each diffuser. In CFD simulation, three-dimensional flow characteristics inside air-conditioning duct were computed for incompressible viscous flow, adopting the RNG k-$\xi$turbulence model. Also, in an effort to equalize the discharge flow rate at each outlet, the optimization procedure has been performed to obtain the optimum diffuser area. In this process, square of difference between maximum discharge rate and minimum discharge rate is used as an object function. Diffuser area and discharge velocity are established as constraints. After optimization process, determined design variables are applied again in CFD simulation and experiment to validate the optimized result by one-dimensional program. Comparison with the experimental data of airflow rate distribution showed that the developed program seems to be acceptable and can be useful design tool for an automotive air-conditioning duct in an initial design stage.

A Study on the Flow Characteristics of Steady State and Pressure Variation inside the Mulffler with the Inflow of Pulsating Exhaust Gas (소음기내의 정상상태 및 맥동파 배기가스 유입에 의한 유동특성에 관한 연구)

  • 김민호;정우인;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.150-159
    • /
    • 1999
  • Exhaust system is composed of several parts. Among, them , design of muffler system strongly influences on engine efficiency and noise reduction. So , through comprehension of flow characteristics inside muffler is necessary . In this study , three-dimensional steady and unsteady compressible flow analysis was performed to understand the flow characteristics, pressure loss and amplitude variation of pulsating pressure. The computational grid generation was carried out using commercial preprocessor ICEM CFD/CAE. And the three-dimensional fluid motion inside the muffler was analyzed by STAR-CD, the computational fluid dynamics code. RNG k-$\varepsilon$ tubulence model was applied to consider the complexity of the geometry and fluid motion. The steady and unsteady flow field inside muffler such as velocity distribution, pulsating pressure and pressure loss was examined. In case of unsteady state analysis, velocity of inlet region was converted from measured pulsating pressure. Experimental measurement of pressure and temperature was carried out to provide the boundary and initial condition for computational study under three engine operating conditions. As a result of this study, we could identify the flow characteristics inside the muffler and obtain the pressure loss, amplitude variation of pulsating exhaust gas.

  • PDF

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

A Study on the Behavior Characteristics of TGL Vortex (Taylor-G$\ddot{o}$rtler-Like(TGL)와의 거동특성에 관한 연구)

  • 이영호;김춘식;조대환;최장운
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.28-37
    • /
    • 1993
  • Flow characteristics within the three-dimensional square cavity are studied experimentally by adopting PIV(Particle Image Velocimetry). A new method for tracking the same particle pairs in the consecutive flow image is suggested resulting in more effective acquisition of the velocity vectors. Two methods for supplying the shearing stress within the cavity are developed by continuous moving belt and 2-dimensional plane Poiseuille flow. The effect of TGL vortex in the case of belt-moving flow is remarkable owing to the distribution of the kinetic energy in the spanwise direction. But, for the plane Poiseuille flow, velocity profiles similar to a forced vortex are obtained and its tendency increases with the Reynolds number.

  • PDF

A Study on the Characteristics of the Flow around a Sunken Vessel (침선어초 주위의 유동특성에 관한 연구)

  • 양찬규;김현주
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.9-16
    • /
    • 2000
  • This paper deals with the numerical and experimental study on the characteristics of the flow around a sunken vessel. Numerical simulation of the two dimensional steady flow on the midship section are carried out by the CFD code which is developed by using finite volume method and which includes the standard $textsc{k}$-$\varepsilon$ model with standard wall function. A experimental study is also carried out for the 1/100 scale model in circulating water channel. A velocity fields around the ship are measuremed by using particle image velocimetry technique. And the fluid forces acting on the ship hull by uniform current are measured by two axis load cell. The computed and measured velocity fields on the midship section are compared with each other in the view point of velocity dstribution and reattachement length, which shows good agreement in quality. The drag force on the vessel also showed the same tendency in both computational and experimental results. However, the quantitative disagreements are shown due to the three dimensional effect of the experiment. The result are used to determine the functional efficiency and stability of the vessel as a artificial reef.

  • PDF