• 제목/요약/키워드: Three-Dimensional Scanning

검색결과 444건 처리시간 0.027초

RGB-D 센서 및 3D Virtual Clothing CAD활용에 의한 패션소재의 동적표현 시스템에 대한 연구 (A Study on the Dynamic Expression of Fabrics based on RGB-D Sensor and 3D Virtual Clothing CAD System)

  • 이지은;김슬기;김종준
    • 패션비즈니스
    • /
    • 제17권1호
    • /
    • pp.30-41
    • /
    • 2013
  • Augmented reality techniques have been increasingly employed in the textile and fashion industry as well as computer graphics sectors. Three-dimensional virtual clothing CAD systems have also been widely used in the textile industries and academic institutes. Motion tracking techniques are grafted together in the 3D and augmented reality techniques in order to develop the virtual three-dimensional clothing and fitting systems in the fashion and textile industry sectors. In this study, three-dimensional virtual clothing sample has been prepared using a 3D virtual clothing CAD along with a 3D scanning and reconstruction system. Motion of the user has been captured through an RGB-D sensor system, and the virtual clothing fitted on the user's body is allowed to move along with the captured motion flow of the user. Acutal fabric specimens are selected for the material characterization. This study is a primary step toward building a comprehensive system for the user to experience interactively virtual clothing under real environment.

Three-dimensional assessment of upper lip positional changes according to simulated maxillary anterior tooth movements by white light scanning

  • Kim, Hwee-Ho;Lee, Jin-Woo;Cha, Kyung-Suk;Chung, Dong-Hwa;Lee, Sang-Min
    • 대한치과교정학회지
    • /
    • 제44권6호
    • /
    • pp.281-293
    • /
    • 2014
  • Objective: Esthetic improvements during orthodontic treatment are achieved by changes in positions of the lips and surrounding soft tissues. Facial soft-tissue movement has already been two-dimensionally evaluated by cephalometry. In this study, we aimed to three-dimensionally assess positional changes of the adult upper lip according to simulated maxillary anterior tooth movements by white light scanning. Methods: We measured changes in three-dimensional coordinates of labial landmarks in relation to maxillary incisor movements of normal adults simulated with films of varying thickness by using a white light scanner. Results: With increasing protraction, the upper lip moved forward and significantly upward. Labial movement was limited by the surrounding soft tissues. The extent of movement above the vermilion border was slightly less than half that of the teeth, showing strong correlation. Most changes were concentrated in the depression above the upper vermilion border. Labial movement toward the nose was reduced significantly. Conclusions: After adequately controlling several variables and using white light scanning with high reproducibility and accuracy, the coefficient of determination showed moderate values (0.40-0.77) and significant changes could be determined. This method would be useful to predict soft-tissue positional changes according to tooth movements.

Anatomic Description of the Infraorbital Soft Tissues by Three-dimensional Scanning System

  • Peralta, Alonso Andres Hormazabal;Choi, You-Jin;Hu, Hyewon;Hu, Kyung-Seok;Kim, Hee-Jin
    • Journal of Korean Dental Science
    • /
    • 제14권2호
    • /
    • pp.101-109
    • /
    • 2021
  • Purpose: For minimally invasive procedures, three-dimensional (3D) anatomical knowledge of the structures of the face is essential. This study aimed to describe the thickness of the skin and subcutaneous tissue and depths of the facial muscles located in the infraorbital region using a 3D scanner to provide critical clinical anatomical guidelines for improving minimally invasive cosmetic procedures. Materials and Methods: The 3D scanning images of 38 Korean cadavers (22 males and 16 females; age range: 51~94 years at the time of death) were analyzed. Eight facial landmarks (P1~P8) were marked on the cadaveric faces. The images were scanned in three steps-undissected face, hemiface after skinning, and revealing the facial muscles. Student's t-test was used to identify significant differences. Result: The skin and subcutaneous tissue tended to become thicker from the upper to lower and medial to lateral aspects, and the muscles followed the same pattern as that of the most superficial located muscle and the deepest located muscles. No significant sex-related differences were found in the skin at any landmark. However, the muscles tended to be deeper in the female participants. Conclusion: The study data can serve as a basis for creating or enhancing clinical anatomy-based guidelines or improving procedures in the infraorbital region.

Discontinuous Surface Profile measurement using Wavelength Scanning Interferometer(WSI)

  • Kang, Chul-Goo;Cho, Hyoung-Suck;Lee, Jae-Yong;Hahn, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.127.4-127
    • /
    • 2001
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. A number of visual or optical technologies have been successfully applied to measure three dimensional surfaces. Especially, the shape measurement using an interferometric principle becomes a successful methodology. However, those conventional interferometric methods to measure surface profile have an inherent shortcoming, namely 2∏ ambiguity problem. The problem inevitably happens when the object to be measured has discontinuous shape due to the repetition of interferometric signal with phase period of 2∏. Therefore, in this paper, we choose as a shape measuring method, ...

  • PDF

THE LASER-BASED AGGREGATE SCANNING SYSTEM: CURRENT CAPABILITIES AND POTENTIAL DEVELOPMENTS

  • 김형관
    • 건설관리
    • /
    • 제4권1호
    • /
    • pp.48-54
    • /
    • 2003
  • An automated system for scanning and characterizing unbound aggregates, called the 'Laser-based Aggregate Scanning System'(LASS), has been developed at the University of Texas at Austin. The system uses a laser profiler to acquire and analyze true three-dimensional data on aggregate particles to measure various morphological properties. Tests have demonstrated that the system can rapidly and accurately measure grain size distribution and dimensional ratios, and can objectively quantify particle shape, angularity, and texture in a size invariant manner. In its present state of development, the LASS machine is a first-generation, laboratory testing device. With additional development, this technology is expected to provide high-quality, detailed information for laboratory and on-line quality control during aggregate production.

Linear accuracy of cone-beam computed tomography and a 3-dimensional facial scanning system: An anthropomorphic phantom study

  • Oh, Song Hee;Kang, Ju Hee;Seo, Yu-Kyeong;Lee, Sae Rom;Choi, Hwa-Young;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • 제48권2호
    • /
    • pp.111-119
    • /
    • 2018
  • Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality. Materials and Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold. Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements(P<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions. Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.

툴링볼을 이용한 측정 및 레지스트레이션 방법 개발 (Developent of Scanning and Registration Methods Using Tooling Balls)

  • 김용환;윤정호;이관행
    • 한국CDE학회논문집
    • /
    • 제4권1호
    • /
    • pp.60-68
    • /
    • 1999
  • In reverse engineering (RE) sustems, the quality of the data aquisition process is crucial to the accuracy of the reverse engineered three dimensional computer-aided design (CAD) model. However, these tasks are predominantly done manually, and little work has been done to improve the efficiency of scanning by determining the minimum number of scans and the optimal scanning directions. In this paper, new scanning and registration methods using tooling balls are developed to assist in determining the optimal parameter for these processes. When the object to scanned has no concavity, attaching path of the object and its bounding rectangle are used for optimal scanning and registration. Then minimum number of tooling balls and their positions are calculated automatically. In the case of concave parts, the scanning plan should include a complete scan of the concave area. With the surface normal vector and the scanning direction, the minimum degree of rotating the part can be calculated. But the maximum rotation should be restricted in order to prevent occlusion of the part. Finally tow sample part ar scanned based on the proposed methods and the results are discussed.

  • PDF

레이저 펄스 부호화를 이용한 원거리 고해상도 3D 스캐닝 라이다 (Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves)

  • 김건정;박용완
    • 한국광학회지
    • /
    • 제27권4호
    • /
    • pp.133-142
    • /
    • 2016
  • 본 논문에서는 DS-OCDMA(direct sequence optical code division multiple access)와 스캐닝 방식의 MEMS (microelectromechanical system) 거울을 이용하여 픽셀별로 스캐닝하는 라이다 시스템(light detection and ranging, LIDAR)의 설계와 시뮬레이션 결과를 기술한다. 제안하는 라이다는 $848{\times}480$ 해상도의 거리 영상을 1초에 60번 측정한다. 영상을 구성하는 각각의 픽셀마다 픽셀 정보와 체크섬을 DS-OCDMA로 부호화한 레이저 펄스로 방출하므로, 반사파를 검출하기 위하여 대기할 필요없이 연속으로 거리 측정이 가능하다. MEMS 거울은 부호화된 레이저 펄스를 반사하여 측정을 원하는 방향으로 보내기 위한 용도로 사용한다. 하나의 거리 영상을 구성하는 픽셀 정보의 처리가 모두 완료되면, 픽셀 개개의 반사파 비행시간을 이용하여 포인트 클라우드를 생성한다.

대형 싱크홀 재난 현장 조사용 3차원 형상화 장비 구현 (Fabrication of Three-Dimensional Scanning System for Inspection of Massive Sinkhole Disaster Sites)

  • 김수로;윤호근;김상욱
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.341-349
    • /
    • 2020
  • Recently, interest in ground subsidence in urban areas has increased after a large sinkhole occurred near the high-story building area in Jamsil, Seoul, Korea, in 2014. If a massive sinkhole occurs in an urban area, it is crucial to assess its risk rapidly. Access to humans for on-site safety diagnosis may be difficult because of the additional risk of collapse in the disaster area. Generally, inspection using drones equipped with high-speed lidar sensors can be utilized. However, if the sinkhole is created vertically to a depth of 100 m, similar to the sinkhole in Guatemala, the drone cannot be applied because of the wireless communication limit and turbulence inside the sinkhole. In this study, a three-dimensional (3D) scanning system was fabricated and operated using a towed cable in a massive vertical sinkhole to a depth of 200 m. A high-speed lidar sensor was used to obtain a continuous cross-sectional shape at a certain depth. An inertial-measuring unit was applied to compensate for the error owing to the rotation and pendulum movement of the measuring unit. A reconstruction algorithm, including the compensation scheme, was developed. In a vertical hole with a depth of 180 m in the mining area, the fabricated system was applied to scan 0-165 m depth. The reconstructed shape was depicted in a 3D graph.

레이저 비전 기술을 이용한 물체의 3D 모델 재구성 방법에 관한 연구 (A Study on Three-Dimensional Model Reconstruction Based on Laser-Vision Technology)

  • 응후쿠옹;이병룡
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.633-641
    • /
    • 2015
  • In this study, we proposed a three-dimensional (3D) scanning system based on laser-vision technique and rotary mechanism for automatic 3D model reconstruction. The proposed scanning system consists of a laser projector, a camera, and a turntable. For laser-camera calibration a new and simple method was proposed. 3D point cloud data of the surface of scanned object was fully collected by integrating extracted laser profiles, which were extracted from laser stripe images, corresponding to rotary angles of the rotary mechanism. The obscured laser profile problem was also solved by adding an addition camera at another viewpoint. From collected 3D point cloud data, the 3D model of the scanned object was reconstructed based on facet-representation. The reconstructed 3D models showed effectiveness and the applicability of the proposed 3D scanning system to 3D model-based applications.