• 제목/요약/키워드: Three-Dimensional Scanning

검색결과 444건 처리시간 0.032초

Role of the Observation Planning in Three-dimensional Environment for Autonomous Reconstruction

  • Moon, Jung-Hyun;You, Bum-Jae;Kim, Hag-Bae;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.37-42
    • /
    • 2005
  • This paper presents an autonomous system for reconstruction of three-dimensional indoor environments using a mobile robot. The system is composed of a mobile robot, a three-dimensional scanning system, and a notebook computer for registration, observation planning and real-time three-dimensional data transferring. Three-dimensional scanning system obtains three-dimensional environmental data and performs filtering of dynamic objects. Then, it registers multiple three-dimensional scans into one coordinate system and performs observation planning which finds the next scanning position by using the layered hexahedral-map and topological-map. Then, the mobile robot moves to the next scanning position, and repeats all procedures until there is no scanning tree in topological-map. In concurrence with data scanning, three-dimensional data can be transferred through wireless-LAN in real-time. This system is experimented successfully by using a mobile robot named KARA.

  • PDF

Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

  • Rhee, Ye-Kyu;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권6호
    • /
    • pp.460-467
    • /
    • 2015
  • PURPOSE. The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For two-dimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).

3차원적 접근 방식을 통한 머리 부위 사진 측정법의 개발 (Development of the Photogrammetric Method of Head Through 3-Dimensional Approach)

  • 김웅;남윤자;김민효
    • 대한인간공학회지
    • /
    • 제24권4호
    • /
    • pp.7-13
    • /
    • 2005
  • We developed an accurate and reliable photogrammetric method available instead of the direct measurement method and the three-dimensional scanning method. Our research was restricted to a head on the body. Approaching three-dimensionally, we calibrated a distorted image of a photograph and got linear equations of camera beams. Then we assigned z values of landmarks in the head and obtained three-dimensional coordinates for each landmark putting those z values in linear equations of camera beams and finally could calculate measurement results from those three-dimensional coordinates. When we compared results obtained by a program, 'Venus Face Measurement(VFM)' that we had developed applying our method with results obtained by the direct measurement method, VFM showed very accurate and reliable results. In conclusion the photogrammetric method developed in this study was testified to an outstanding measurement method as a substitute for the direct measurement method and the three-dimensional scanning method.

Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

  • Lee, Woo Yeon;Kim, Min Jung;Lew, Dae Hyun;Song, Seung Yong;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • 제43권5호
    • /
    • pp.430-437
    • /
    • 2016
  • Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods.

Three-Dimensional Television using Optical Scanning Holography

  • Poon, Ting-Chung
    • Journal of Information Display
    • /
    • 제3권3호
    • /
    • pp.12-16
    • /
    • 2002
  • We first review a real-time three-dimensional (3-D) holographic recording technique called optical scanning holography (OSH) and discuss holographic reconstruction using spatial light modulators (SLMs). We then present how the overall system can be used for 3-D holographic television (TV) display with a wide-angle view of a 3-D image, and address some of the issues encountered. Finally, we suggest some techniques to alleviate the issues encountered in such a 3-D holographic TV system.

Optical Scanning Holography - A Review of Recent Progress

  • Poon, Ting-Chung
    • Journal of the Optical Society of Korea
    • /
    • 제13권4호
    • /
    • pp.406-415
    • /
    • 2009
  • Optical scanning holography (OSH) is a distinct digital holographic technique in that real-time holographic recording a three-dimensional (3-D) object can be acquired by using two-dimensional active optical heterodyne scanning. Applications of the technique so far have included optical scanning cryptography, optical scanning microscopy, 3-D pattern recognition, 3-D holographic TV, and 3-D optical remote sensing. This paper reviews some of the recent progress in OSH. Some possible further works are also discussed.

Flexure hinge mechanism having amplified rectilinear motion for confocal scanning microscopy using optical section

  • Kwon, Oh-Kyu;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.162.6-162
    • /
    • 2001
  • Confocal scanning microscopy (CSM) is an important instrument in a wide variety of imaging applications because of its ability to provide three-dimensional images of thick, volume specimens. The mechanism for two-dimensional beam scanning and optical sectioning has an important roe in CSM as the three-dimensional profiler. This optical sectioning property arises from the use of a point detector, which serves to attenuate the signals from out-of-focus. The intensity profile for the open loop scanning should be matched with its response for the standard. The non-linearity can be minimized with the optical sectioning or the optical probe of the closed loop control. This paper shows the mathematical expression of the light such as the extinction curve in the optical fields of system using AO deflector, the axial/lateral response experimentally when the error sources change, and the methods of optical sectioning. Thorough design of optical sectioner is crucial to the success of CSM in the field ...

  • PDF

Biomedical Applications of Stereoscopy for Three-Dimensional Surface Reconstruction in Scanning Electron Microscopes

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • 제46권2호
    • /
    • pp.71-75
    • /
    • 2016
  • The scanning electron microscope (SEM) offers two-dimensional (2D) micrographs of three-dimensional (3D) objects due to its inherent operating mechanisms. To overcome this limitation, other devices have been used for quantitative morphological analysis. Many efforts have been made on the applications of software-based approaches to 3D reconstruction and measurements by SEM. Based on the acquisition of two stereo images, a multi-view technique consists of two parts: (i) geometric calibration and (ii) image matching. Quantitative morphological parameters such as height and depth could be nondestructively measured by SEM combined with special software programs. It is also possible to obtain conventional surface parameters such as roughness and volume of biomedical specimens through 3D SEM surface reconstruction. There is growing evidence that conventional 2D SEM without special electron detectors can be transformed to 3D SEM for quantitative measurements in biomedical research.

Convergence Modeling and Reproduction of a Bigyeokjincheolloe (Bomb Shell) Based on Three-dimensional Scanning and 𝛾-ray Radiography

  • Kim, Da Sol;Jo, Young Hoon;Huh, Il Kwon;Byun, Sung Moon
    • 보존과학회지
    • /
    • 제38권1호
    • /
    • pp.55-63
    • /
    • 2022
  • The Bigyeokjincheolloe (bomb shell), a scientific cultural heritage, has outstanding historical value for sustaining a gunpowder weapon of Joseon. In this study, the bomb shell was modeled through three-dimensional (3D) scanning centered on the external shape and 𝛾-ray radiography-based on the internal shape. In particular, to improve the contrast in the radiographic image, optimization and image processing were performed. After these processes, the thickness of the inner wall (2.5 cm on average) and the positions of the three mold chaplets were clearly revealed. For exhibition purposes, the 3D model of the bomb shell was output to a 3D printer and the output was rendered realistic by coloring. In addition, the internal functional elements, such as Mokgok, fuse, mud, gunpowder, and caltrops, were reproduced through handwork. The results will contribute to the study of digital heritages in two ways. First, the internal and external shapes of the bomb shell were modeled by fusing two different technologies, namely, 3D scanning and 𝛾-ray radiography. Second, the internal shape of the bomb shell was constructed from the original form data and the reproduction was utilized for museum exhibitions. The developed modeling approach will greatly expand the scope of museum exhibitions, from those centered on historical content to those centered on scientific content.

광학식 표면스캐닝 및 X-선 CT를 활용한 유물의 3차원 융합모델 제작: 국립진주박물관 소장 삼총통 (Creation of Three-dimensional Convergence Model for Artifact Based on Optical Surface Scanning and X-ray CT: Sam-Chongtong Hand Canon in Jinju National Museum)

  • 조영훈;김다솔;김해솔;허일권;송민규
    • 박물관보존과학
    • /
    • 제22권
    • /
    • pp.15-26
    • /
    • 2019
  • 이 연구에서는 표면형상 취득에 최적화되어 있는 광학식 정밀스캐닝과 내부 형상획득에 사용되는 X-선 CT스캐닝 결과를 이용하여 삼총통의 내·외부 형상을 다각적으로 분석할 수 있는 3차원(이하 3D) 융합 모델을 제작하였다. 먼저 두 스캐닝 결과를 호환 가능한 확장자로 변환 한 다음 상호간의 정합성을 검증하고자 3D 편차분석을 수행하였다. 이 결과, 두 스캐닝 모델은 대부분(56.98%) ±0.1mm 이내의 편차를 보였으며, 이 수치는 ICP 알고리즘 기반의 정합 및 병합에 큰 영향을 주지 않았다. 병합된 데이터는 총통의 외부 표면색 및 미세형상, 내부 두께 및 구조를 잘 표현하였다. 광학식 표면스캐닝과 X-선 CT스캐닝의 3D 융합 모델은 문화유산의 디지털기록화뿐만 아니라 제작기법 해석에 유용하게 사용되었다. 향후 박물관 전시 영역에서 전시품의 과학적 조사 정보를 보다 쉽게 관람객에게 전달하는 효과를 발휘 할 것으로 기대된다.