• Title/Summary/Keyword: Three phase induction motor

Search Result 291, Processing Time 0.026 seconds

A Study on the Susceptibility of Single-phase Sensitive Loads and the Three-phase Induction Motor by Voltage Sag (순간전압강하에 의한 단상 민감부하 및 삼상 유도전동기의 외란 민감도에 관한 연구)

  • Yun Sang-Yun;Moon Jong-Fil;Kim Jae-Chul;Lee Hee-Tae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • In this paper we explore the susceptibility of common sensitive loads by voltage sags of power distribution systems. The experimental approach was used for obtaining the susceptibility of single-phase loads and the three-phase induction motor. The experimental result of single-phase loads was transformed to the ITIC(Information of Technology Industry Council) format and used for evaluating the adverse impacts of a individual and repetitive sags using the performance contour of the foreign standard data. In order to assess the impact of voltage sags on three-phase induction motor, also, the experiment was peformed. The experiment was focused on the current, torque, and speed loss of the motor during a voltage sag. For comparing the impacts of individual and repetitive voltage sags, the variations of motor torque is focused among the experimental results. The sensitive curves of instantaneous current peak are used to describe the susceptibility of three-phase induction motor and 진so it were used for the quantitative analysis of the impact of three-phase induction motor due to voltage sags. Through the results of experiment, we verified that some types loads have more severe impact at repetitive voltage sags than individual ones and proposed method can be effectively used to evaluate the actual impact of voltage sags.

A Study on Current and Torque Characteristics Of Three-Phase Induction Motor in Single-Phase Operation. (삼상유도전동기의 결상시 전류 및 회전력특성에 관한 연구)

  • 유춘식;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.25-33
    • /
    • 1982
  • The characteristics of the stator current and torque of a small three- phase squirrel cage induction motor and studied experimentally under the situation of a single-phase operation due to various causes. Through the experiments, the torque-slip and current-slip curve of single-phase circuit as well as three-phase circuit are obtained and the needed constants are determined. The stator current and torque are calculated by the current and torque equations derived by the unbalanced circuit theory. The numerical values obtained from the above methods are compared with the experimental values under the same conditions. The results of the study are summerized as follow; 1) The values computed by the unbalanced circuit theory generally come to approach the values recorded through experiments. 2) Near the rated load, speed drop is less than 1.2 per cent of the speed of three-phase induction motor and torque reduces less than 3 per cent of it of three-phase induction motor when three-phase induction motor is run under a single-phase. On the other hand, the stator current in a single-phase circuit is more than 1.9 times of it in three-phase circuit. 3) The stalling torque in a single-phase circuit is reduced to about 41 per cent of it in three-phase circuit while the corresponding slip is moved toward the synchroneous speed and the corresponding stator current is increased.

  • PDF

Analysis on the Operation Characteristics of Induction Motor Operated by Asymmetric Unbalanced Voltage (비대칭 불평형 전압 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Sohn, Hong-Kwan;Jeong, Jong-Ho;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.2
    • /
    • pp.58-64
    • /
    • 2004
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Voltage unbalance is a condition in a polyphase system in which the rms values of the line-to-line voltages or the phase angles between consecutive line-to-line voltages, are not all equal. Slight voltage unbalance generates a disproportionately high current unbalance at the motor stator winding. This paper presents a scheme on operation states of a three-phase induction motor under unbalanced voltages. The three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting the magnitude and phase angle of each phase. The voltage unbalanced factor(VUF) of the three-phase source voltages can then be varied to examine the different values of VUF on machine's operation characteristics.

Selection of Voltage Vectors in Three-Level Five-Phase Direct Torque Control for Performance Improvement

  • Tatte, Yogesh N.;Aware, Mohan V.
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2162-2172
    • /
    • 2016
  • This paper presents a Direct Torque Control (DTC) strategy for the five-phase induction motor driven by a three-level five-phase inverter in order to improve the performance of the five-phase induction motor. In the proposed DTC technique, only 22 voltage vectors out of 243 available voltage vectors in a three-level five-phase inverter are selected and are divided in 10 sectors each with a width of $36^{\circ}$. The four different DTC combinations (DTC-I, II, III and IV) for a three-level five-phase induction motor drive are investigated for improving the performance of five-phase induction motor. All four of the DTC strategies utilize a combination of the same large and zero voltage vectors, but with different medium voltage vectors. Out of these four techniques, DTC-II gives the best performance when compared to the others. This DTC-II technique is analyzed in detail for improvements in the performance of five-phase induction motor in terms of torque ripple, x-y stator flux and Total Harmonics Distortion (THD) of the stator phase current when compared to its two-level counterparts. To verify the effectiveness of the proposed three-level five-phase DTC control strategy, a DSP based experimental system is build. Simulation and experimental results are provided in order to validate the proposed DTC technique.

Analysis on the Operation Characteristics of Induction Motor Operated by Unbalanced Voltage with Harmonics Components (고조파 성분이 포함된 전압 불평형 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.134-140
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are usually balanced and connected to three power systems. However, in the user power distribution systems, partial loads are single & three phase and unbalanced, generating voltage unbalance by the impedance mismatching. Voltage unbalance has detrimental effects on three-phase induction motors, including over heating, line-current unbalance, derating, torque pulsation, low efficiency, etc. This paper presents a scheme on operation states of a three-phase induction motor under the unbalanced voltages with harmonics components. Three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting not only fundamental but also harmonics components. Harmonic components at the voltage unbalanced factor(VUF) of the three-phase source voltages can then be examined the different values of VUF on machine's operation characteristics.

Analysis on the Operation Characteristics of Induction Motor Operated by Unbalanced Voltage (불평형 전압 운전시 유도전동기의 동작 특성 해석)

  • 김종겸;박영진;정종호;이은웅
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.6
    • /
    • pp.372-379
    • /
    • 2004
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Rotating machines operating on an unbalanced voltage will draw a highly unbalanced current. As a result, the three-phase currents may differ considerably, thus resulting in an increased temperature rise in the machine. This paper presents a scheme on steady states of a three-phase induction motor under unbalanced voltages. The three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting the magnitude and phase angle of each phase. The voltage unbalanced factor(VUF) of the three-phase source voltages can then be varied to examine the different values of VUF on machine's operation characteristics.

A Study on Stabilization of Multi-Excited Induction Motor (다중여자 유도전동기의 안정도에 관한 연구)

  • 강만원;김한성
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.78-85
    • /
    • 1995
  • This paper covers stability and stabilization of Multi-Excited Induction Motor used in numberous electric equipment system of industrial field. The induction motor with multi-excitation has tow sets of three-phase system : One is connected to the AC source to supply most power required at the load, and the other is to the inverter for variable frequency and/or magnitude of voltage. The conventional induction motor is operated under single excitation mode only, that is called induction mode. But in multi-excited induction motor both the induction mode and the synchronous mode are possible, and the proposed multi-excited induction motor can be driven as a synchronous motor by the extra three-phase input. At the synchronous mode the efficiency is improved so higher than that at induction mode or conventional induction motor. The rating of the inverter used for speed control of numberous electric equipment system can be reduced upto one-tenth of that for conventional induction motor. Also the cost and maintenance fee of multi-excited induction motor can be reduced compared to any other motor.

  • PDF

Study of Losses segregation for Capacitor-Run Single phase Induction Motor (커패시터 구동형 단상 유도전동기의 손실분리 연구)

  • Kim, Kwang-Soo;Kim, Ki-Chan;Lee, Sang-Hoon;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.16-18
    • /
    • 2008
  • Several methods are proposed in the literature for losses segregation of single phase induction motor. Generally we could divide two methods for experimental determination of losses segregation for single phase induction motor. The one is relatively complicated method based on Parameter estimation of single phase induction motor. The other is simple method based on IEEE Standard 114. Segregation of losses in single phase induction motor is more complicated than that in three phase induction motor, because of the backward magnetic field component in the motor and multiplicity of different single phase type. In this paper, therefore, we studied losses segregation of capacitor-run single phase induction motor.

  • PDF

Analysis on the Operation Characteristics of Induction Motor Operated by Symmetric Unbalanced Voltage (대칭 불평형 전압 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Sohn, Hong-Kwan;Jeong, Jong-Ho;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.110-115
    • /
    • 2004
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. This paper presents a scheme on operation states of a three-phase induction motor under unbalanced voltages. The three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting the magnitude and phase angle of each phase. The voltage unbalanced factor(VUF) of the three-phase source voltages can then be varied to examine the different values of VUF on machine's operation characteristics.

Study on Losses Segregation for Capacitor-Run Single Phase Induction Motor (커패시터 구동형 단상유도전동기의 손실분리에 대한 연구)

  • Kim, Kwang-Soo;Kim, Ki-Chan;Lee, Sung-Gu;Go, Sung-Chul;Chun, Yon-Do;Lee, Chul-Kyu;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1546-1551
    • /
    • 2008
  • This paper is concerned with the problems of accurate losses segregation in capacitor-run single phase motor. Segregation of losses in single phase induction motor is more complicated than that in three phase induction motor, because of the backward magnetic field component in the motor. Generally there are two methods for losses segregation of single phase induction motor. The one is relatively complicated method based on parameter estimation of single phase induction motor. By the way, the other one is simplified method based on IEEE Standard 114. All of the methods for the experimental determination of single phase induction motor losses are studied in this paper. Since the IEEE Standard is not possible to be applied for all type of single phase induction motors, we modified that method to apply for losses segregation of capacitor-run single phase induction motor as unifying the method based on parameter estimation.