• 제목/요약/키워드: Three electrode structure

검색결과 114건 처리시간 0.02초

$Pb(Zr_{0.56}Ti_{0.44})O_3$ 강유전체 음극의 전극 모형에 따른 전자 방출 특성 (Effect of Electrode Structures on Electron Emission of the $Pb(Zr_{0.56}Ti_{0.44})O_3$ Ferroelectric Cathode)

  • 서민수;홍기민
    • 한국군사과학기술학회지
    • /
    • 제13권4호
    • /
    • pp.699-707
    • /
    • 2010
  • Electric-field-induced electron emission from the three kinds of $Pb(Zr_{0.56}Ti_{0.44})O_3$ ferroelectric cathodes with different electrode structure has been investigated. Regardless of the electrode structures, a threshold field of the each cathode was 2.5-2.6kV/mm, which is 3 times higher than the coercive field of $Pb(Zr_{0.56}Ti_{0.44})O_3$ material. Although the waveform of the electron currents was affected by the structure of the electrode, no significant difference for the emission properties such as the peak current and the pulse width was observed from the three kinds of the cathodes. However, the current density of the cathode was dependent on the electrode structure. From the simulation of electric field distribution, the surface flashover, and the injury region of the cathode surface, it was proved that the prime electrons were initiated at the electrode-ceramic-vacuum triple point by field emission and the emission currents were strongly enhanced by the surface plasma.

3전극형 전자종이 디스플레이의 이미지 반전현상에 관한 연구 (A Study on Image Reversal Phenomenon of Three-Electrode Type Electronic Paper Display)

  • 신용관;김영조
    • 한국전기전자재료학회논문지
    • /
    • 제28권8호
    • /
    • pp.524-530
    • /
    • 2015
  • We propose a three-electrode type electronic paper display and its fabrication process to realize single color at the same display panel. We establish a fabrication process with the mixing of electronic ink, loading of this ink, electronic ink assembly, packaging and driving. Also, we discuss an operating principle of this panel and the induced image reversal phenomenon by electric field area of the lower electrodes. This phenomenon is not occurred for the panel having $10{\mu}m$ electrode space. By this pixelation structure like this three-electronic paper display, a single color realization without color filter is possible and various kind of color is defined by a dye selection for charged particles and electrically neutral fluid.

수용성 고분자 젤 전해질을 이용한 전기이중층 커패시터 의 개발 (Development of EDLC using aqueous polymeric gel electrolytel)

  • 오길훈;김한주;최원경;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.581-584
    • /
    • 2001
  • For the first time, a totally solid state electric double layer capacitor has been fabricated using an alkaline polymer electrolyte and an activated carbon powder as electrode material. The polymer electrolyte serves both as separator as well as electrode binder. The capacitor has a three-layer structure; electrode-electrolyte-electrode. A cyclic voltammetry and constant current discharge have been used for the determination of the electro chemical performance of capacitors.

  • PDF

Three-Point 전극(電極) 배열법(配列法)을 이용(利用)한 전기(電氣) 비저항탐사(比抵抗探査) 모형연구(模型硏究) (A Model Study for Electrical Resistivity Method Using Three-Point Electrode Array)

  • 민경덕;김종미
    • 자원환경지질
    • /
    • 제14권3호
    • /
    • pp.111-122
    • /
    • 1981
  • This study is a model analysis for an effective application of the geophysical prospecting to the investigation of geological structures or useful resources, and the purpose of it is to research a property of the electrical resistivity prospecting, especially by using a Three-Point electrode array method. In using the Three-Point electrode array method, it is theoretically assumed to choose the infinite for a distance between the two current electrodes, however it is impossible in applying to the practical field prospecting. Therefore this study was conducted for determination and presentation of a minimum appropriate distance between the two current electrodes by making a study on prospecting effect in the variation of distance between both the electrodes. In case that the ratios of the distance between the two current electrodes to that between the two potential electrodes are respectively chosen for 40, 400, 5,000, the experimental data of this study showed that the minimum appropriate distance between the two current electrodes is forty times as much as that between two potential electrodes. In order to make clear a problem about prospecting depth which is essential to the data processing, it had been chosen equally to the distance between two potential electrodes. As a result of it, it was shown that the anomaly is appeared along the position of an assumed ore body. Consequently it was found out that the prospecting depth of the Three-Point electrode array method is the same as the distance between the two potential electrodes. From the model experiment on the sheeting ore body(or linear structure) of horizontal, dipping of $30^{\circ}$, $60^{\circ}$ and vertical on the basis of above experimental condition, it was found out that the position and dip of assumed ore body could be inferred from the aspects of the equiresistivity curve. In consequence of performing out the simultaneous Normal and Reversal electrode movement, it was shown that the electrode movement of the Reversal forms the anomaly more clearly than that of Normal when the sheeting ore body is situated obliquely, therefore it could be ascertained that the electrode movement have to be performed simultaneously in the manner of Normal and Reversal. It was also exhibited that the aspect of the equiresistivity curve forms symmetrically when an assumed ore body (or linear structure) is situated horizontally or vertically, that is, symmetrically, and moreover that the aspect of the equiresistivity curve forms unsymmetrically when an assumed ore body (or linear structure) is situated obliquely. On the basis of these experimental analysis it is thought that it can be inferred from the aspect of equiresistivity curve whether an assumed ore body is obliquely situated or not.

  • PDF

FFS모드 LCD의 투과율 향상을 위한 전극 구조 개선 (Improvement of Electrode Structure of FFS Mode LCD for Obtaining High Transmittance)

  • 김봉식;오현민;박우상
    • 한국전기전자재료학회논문지
    • /
    • 제24권4호
    • /
    • pp.309-313
    • /
    • 2011
  • In this study, we proposed a novel electrode structure for the fringe field switching (FFS) mode LCD and performed a three-dimensional computer simulation to calculate the optical transmittance for the new structure. In the simulation Erickson-leslie equation and Berreman $4{\times}4$ matrix were used for obtaining the director distribution profiles of liquid crystal molecules and the electro-optical characteristics, respectively. Considering the complexity of the motional equation of the liquid crystal molecules, FDM (finite difference method) was used as a numerical method. From the results, We revealed that the light transmission of the newly designed pixel structure is expended to the edge of the pixel electrode. We also confirmed that the light transmittance increased more than 13% compared to that of the conventional electrode structure.

Self-Supporting 3D-Graphene/MnO2 Composite Supercapacitors with High Stability

  • Zhaoyang Han;Sang-Hee Son
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.175-185
    • /
    • 2023
  • A hybrid supercapacitor is a promising energy storage device in view of its excellent capacitive performance. Commercial three-dimensional foam nickel (Ni) can be used as an ideal framework due to an interconnected network structure. However, its application as an electrode material for supercapacitors is limited due to its low specific capacity. Herein, we report a successful growth of MnO2 on the surface of graphene by a one-step hydrothermal method; thus, forming a three-dimensional MnO2-graphene-Ni hybrid foam. Our results show that the mixed structure of MnO2 with nanoflowers and nanorods grown on the graphene/Ni foam as a hybrid electrode delivers the maximum specific capacitance of 193 F·g-1 at a current density 0.1 A·g-1. More importantly, the hybrid electrode retains 104% of its initial capacitance after 1,000 charge-discharge cycles at 1 A·g-1; thus, showing the potential application as a stable supercapacitor electrode.

3전극형 반사형 컬러 디스플레이의 제작 및 구현 (Fabrication and Realization of Three-Electrode Type Color Reflective Display)

  • 신용관;김영조
    • 한국전기전자재료학회논문지
    • /
    • 제28권1호
    • /
    • pp.21-27
    • /
    • 2015
  • We propose a fabrication process of a 3-electrode type reflective display and ascertain the realized color panel. The first design is proceeded with basis on Ti electrode for fast panel fabrication, easy align process, and high reflection of a white image. To observe the particle movement at the lower electrodes and optimize the space between electrodes, we design the second patterns, from which we establish a fabrication process with the mixing of electronic ink, loading of this ink, electronic ink assembly, driving, and packaging. After aging process, we ascertain a normally driving panel with black, white, and blue color.

구현방식이 용이한 텍스타일 터치센서 개발 및 구조적 설계 (Development and Structural Design of Textile Touch Sensor Easily Implemented)

  • 김지선;박진희;김주용
    • 한국의류학회지
    • /
    • 제45권1호
    • /
    • pp.168-179
    • /
    • 2021
  • This study presents and develops a textile type touch sensor structural design that is easy to implement. First, the design of the touch sensor circuit finds the size of the switch with the easiest finger contact and selects a structure with a long circuit with the lowest resistance value. An experiment is performed on a change in an electrostatic capacitance value that accompanies the distance on the electrode and the magnitude of the electrode area of the structure; however, the structure having the distance on the electrode and the large electrode area shows the best resistance change. The laundry assessment was conducted three times at a time and ten times at a time with an average standard deviation less than one ohm, with little change in resistance. Consequently, there were no problems with durability and performance for laundry. Finally, in the bending evaluation, the difference in resistance can be seen between 1-2 ohms and was developed as a smart wearable in the future; in addition, there was no problem as a difference in resistance can be seen between 1 and 2 ohms.

링거액 소진 감지를 위한 정전용량방식의 차동센서 설계 및 제작 (Design & implementation of differential sensor using electrostatic capacitance method for detecting Ringer's solution exhaustion)

  • 심요섭;김청월
    • 센서학회지
    • /
    • 제19권5호
    • /
    • pp.391-397
    • /
    • 2010
  • This paper proposes a differential structure sensor for detecting Ringer's solution exhaustion, in which three C-type electrodes of 10 mm width are disposed on a ringer hose at a distance of 5 mm each other in the direction of Ringer's solution flow. In the center of middle electrode, two capacitances are formed at the proposed sensor. When ringer hose is filled with Ringer's solution, there is no difference between two capacitances. But capacitance difference exist under the Ringer's solution shortage, because the shortage causes the hose filled with air from the top position electrode. The capacitance difference got to maximum 1.81 pF, when air was filled between top and middle electrode and the last of hose was filled with 10 % dextrose injection Ringer's solution. The capacitance difference varied with hose-wraparound coverage of electrodes as well as the width of them. For hose-wraparound electrode coverage of 90 % and 70 %, the maximum capacitance difference was 1.81 pF and 1.56 pF, respectively. A differential charge amplifier converted the capacitance difference to electric signal, and minimized electrodes' adhering problem and external noise coupling problem.

A brief review on graphene applications in rechargeable lithium ion battery electrode materials

  • Akbar, Sameen;Rehan, Muhammad;Liu, Haiyang;Rafique, Iqra;Akbar, Hurria
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.1-8
    • /
    • 2018
  • Graphene is a single atomic layer of carbon atoms, and has exceptional electrical, mechanical, and optical characteristics. It has been broadly utilized in the fields of material science, physics, chemistry, device fabrication, information, and biology. In this review paper, we briefly investigate the ideas, structure, characteristics, and fabrication techniques for graphene applications in lithium ion batteries (LIBs). In LIBs, a constant three-dimensional (3D) conductive system can adequately enhance the transportation of electrons and ions of the electrode material. The use of 3D graphene and graphene-expansion electrode materials can significantly upgrade LIBs characteristics to give higher electric conductivity, greater capacity, and good stability. This review demonstrates several recent advances in graphene-containing LIB electrode materials, and addresses probable trends into the future.