• Title/Summary/Keyword: Three dimensional numerical computation

Search Result 141, Processing Time 0.022 seconds

Analysis of Three-dimensional Nonaxisymmetric Spin-up by Using Parallel Computation (병렬계산에 의한 비축대칭 3차원 스핀업 유동해석)

  • Park, Jae-Hyoun;Choi, Yoon-Hwan;Suh, Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.512-517
    • /
    • 2001
  • In this study, spin-up flows in a rectangular container are analysed by using three-dimensional computation. In the numerical computation, we use the parallel computer system of PC-cluster type. We compared our results with those obtained by two-dimensional computation. Effect of velocity and vorticity on the flow is studied. The result shows that two-dimensional solution is in good agreement with the 3-D result. Attention is given to the region where the 3-D flow is significant.

  • PDF

Three-Dimensional Numerical Computation and Experiment on Periodic Flows under a Background Rotation (배경회전하에서 형성되는 주기적 유동의 3차원 수치해석과 실험)

  • Suh, Yong-Kweon;Park, Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.628-634
    • /
    • 2003
  • We present numerical and experimental results of periodic flows inside a rectangular container under a background rotation. The periodic flows are generated by changing the speed of rotation periodically so that a time-periodic body forces produce the unsteady flows. In numerical computation, a parallel-computation technique with MPI is implemented. Flow visualization and PIV measurement are also performed to obtain velocity fields at the free surface. Through a series of numerical and experimental works, we aim to clarify, if any, the fundamental reasons \ulcornerf discrepancy between the two-dimensional computation and the experimental measurement, which was detected in the previous study for the same flow model. Specifically, we check if the various assumptions prerequisite for the validity of the classical Ekman pumping law are satisfied for periodic flows under a background rotation.

Electric Field Analysis Using Three Dimensional Boundary Integral Equation Method (3차원 경계적분방정식법을 이용한 정전장 해석)

  • Kim, Jae-Hong;Kim, Dong-Hun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.828-830
    • /
    • 2000
  • This paper describes BIEM(Boundary Integral Equation Method) for computation of three dimensional electric field distribution and numerical method that an equivalent charge density is unknown variable. After computing numerically the surface charge distribution. the distribution of both potential and electric field are obtained. Finally, this numerical method is applied to the concentric sphere and the coaxial cylindrical model and numerical result is compared to the analytic solution.

  • PDF

The Study for Spin-up Flows in a Shallow Quadrangular Container (얇은 정사각형 용기내의 스핀-업 유동에 관한 연구)

  • 박재현;서용권
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.207-212
    • /
    • 2001
  • In this study, spin-up flows in a shallow rectangular container are analysed by using three-dimensional computation. We compared our results with those obtained by quasi three-dimensional computation. Our results show that quasi S-D solustion is not accurate enough and it provides far less damped solution.

  • PDF

COMPARISON OF NUMERICAL SCHEMES ON MULTI-DIMENSIONAL BLACK-SCHOLES EQUATIONS

  • Jo, Joonglee;Kim, Yongsik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2035-2051
    • /
    • 2013
  • In this paper, we study numerical schemes for solving multi-dimensional option pricing problem. We compare the direct solving method and the Operator Splitting Method(OSM) by using finite difference approximations. By varying parameters of the Black-Scholes equations for the maximum on the call option problem, we observed that there is no significant difference between the two methods on the convergence criterion except a huge difference in computation cost. Therefore, the two methods are compatible in practice and one can improve the time efficiency by combining the OSM with parallel computation technique. We show numerical examples including the Equity-Linked Security(ELS) pricing based on either two assets or three assets by using the OSM with the Monte-Carlo Simulation as the benchmark.

The natural convection in a three dimensional enclosure using color capturing technique and computation (색상 포착 기법과 수치계산을 이용한 3차원 밀폐 공간내의 자연대류 연구)

  • Lee, Gi-Baek;Kim, Tae-Yeong;Yang, Jang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1595-1607
    • /
    • 1997
  • The natural convection of a horizontal layer heated from below in a three-dimensional rectangular enclosure was dealt with both numerically and experimentally. The aspect ratios are 1:2:3.5 and Boussinesq fluid is water with the Prandtl number of 5.0. This experimental study showed how to measure the variation of temperature field in a 3-D rectangular enclosure with small aspect ratios by using TLC(Thermochromic Liquid Crystal) and color capturing technique. The experimental temperature field had periodic characteristics of 75 sec at Ra=2.37*10$^{5}$ . But the numerical convection flow had periodic characteristics of 79 sec at the same Rayleigh number. In three dimensional computation it was found that the convection roll structure bifurcated from four rolls to two rolls as the Rayleigh number is increased.

Visualization of Unsteady Fluid Flows by Using Large Eddy Simulation

  • Kobayashi, Toshio;Taniguchi, Nobuyuki
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1750-1756
    • /
    • 2001
  • Three-dimensional and unsteady flow analysis is a practical target of high performance computation. As recently advances of computers, a numerical prediction by the large eddy simulation (LES) are introduced and evaluated for various engineering problems. Its advanced methods for the complex turbulent flows are discussed by several examples applied for aerodynamic designs, analysis of fluid flow mechanisms and their interaction to complex phenomena. These results of time-dependent and three-dimensional phenomena are visualized by interactive graphics and animations.

  • PDF

A Numerical Study for the Three-Dimensional Fluid Flow Past Tube Banks and Comparison with PIV Experimental Data

  • Ha, Man-Yeong;Kim, Seung-Hyeon;Kim, Kyung-Chun;Son, Young-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2236-2249
    • /
    • 2004
  • The analysis for the three-dimensional fluid flow past tube banks arranged in equilateral-triangular form at Re$\_$max/=4,000 is carried out using a large eddy simulation technique. The governing equations for the mass and momentum conservation are discretized using the finite volume method. Parallel computational techniques using MPI (Message Passing Interface) are implemented in the present computer code. The computation time decreases linearly proportional to the number of used CPUs in the present parallel computation. We obtained the time-averaged streamwise and cross-streamwise velocities and turbulent intensities. The present numerical results are compared with the PIV experimental data and agree generally well with the experimental data.

DEVELOPMENT OF A CORE THERMO-FLUID ANALYSIS CODE FOR PRISMATIC GAS COOLED REACTORS

  • Tak, Nam-Il;Lee, Sung Nam;Kim, Min-Hwan;Lim, Hong Sik;Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.641-654
    • /
    • 2014
  • A new computer code, named CORONA (Core Reliable Optimization and thermo-fluid Network Analysis), was developed for the core thermo-fluid analysis of a prismatic gas cooled reactor. The CORONA code is targeted for whole-core thermo-fluid analysis of a prismatic gas cooled reactor, with fast computation and reasonable accuracy. In order to achieve this target, the development of CORONA focused on (1) an efficient numerical method, (2) efficient grid generation, and (3) parallel computation. The key idea for the efficient numerical method of CORONA is to solve a three-dimensional solid heat conduction equation combined with one-dimensional fluid flow network equations. The typical difficulties in generating computational grids for a whole core analysis were overcome by using a basic unit cell concept. A fast calculation was finally achieved by a block-wise parallel computation method. The objective of the present paper is to summarize the motivation and strategy, numerical approaches, verification and validation, parallel computation, and perspective of the CORONA code.

A Numerical Study on Spin-up Flows in a Shallow Quadrangular Container (얇은 정사각형 용기 내의 스핀-업 유동에 관한 수치해석적 연구)

  • Park, Jae-Hyun;Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1005-1013
    • /
    • 2002
  • Spin-up is a transient flow phenomenon occurring in a container when it starts to rotate from rest or its rotational speed increases from a low to high value. However, most studies on this subject have been for two-dimensional approximation. In this study, spin-up flows in a shallow rectangular container are analysed by using three-dimensional computation. We compared our results with those obtained by others using basically two-dimensional computation. Effect of two parameters, Reynolds number and liquid depth on the flow evolution is studied. We found that 2-D result is not accurate enough, and the vertical velocity distribution should be assumed of a fourth-order polynomial function for a better comparison.