• Title/Summary/Keyword: Three Level Converter

Search Result 222, Processing Time 0.025 seconds

ZVZCS(Zero-Voltage and Zero-Current-Switching Three-Level DC/DC Converter reducing voltage stress of auxiliary circuit (보조 회로의 전압 스트레스를 저감한 ZVZCS Three-Level DC/DC 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Cho, Kyu-Man;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.172-174
    • /
    • 2005
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three-Level DC/DC Convertor reducing voltage stress of auxiliary circuit is proposed. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 2kW 40kHz IGBT based experimental circuit.

  • PDF

A Novel Analytical Method for Selective Harmonic Elimination Problem in Five-Level Converters

  • Golshan, Farzad;Abrishamifar, Adib;Arasteh, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.914-922
    • /
    • 2017
  • Multilevel converters have attracted a lot of attention in recent years. The efficiency parameters of a multilevel converter such as the switching losses and total harmonic distortion (THD) mainly depend on the modulation strategy used to control the converter. Among all of the modulation techniques, the selective harmonic elimination (SHE) method is particularly suitable for high-power applications due to its low switching frequency and high quality output voltage. This paper proposes a new expression for the SHE problem in five-level converters. Based on this new expression, a simple analytical method is introduced to determine the feasible modulation index intervals and to calculate the exact value of the switching angles. For each selected harmonic, this method presents three-level or five-level waveforms according to the value of the modulation index. Furthermore, a flowchart is proposed for the real-time implementation of this analytical method, which can be performed by a simple processor and without the need of any lookup table. The performance of the proposed algorithm is evaluated with several simulation and experimental results for a single phase five-level diode-clamped inverter.

A Real-Time Method for the Diagnosis of Multiple Switch Faults in NPC Inverters Based on Output Currents Analysis

  • Abadi, Mohsen Bandar;Mendes, Andre M.S.;Cruz, Sergio M.A.
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1415-1425
    • /
    • 2016
  • This paper presents a new approach for fault diagnosis in three-level neutral point clamped inverters. The proposed method is based on the average values of the positive and negative parts of normalized output currents. This method is capable of detecting and locating multiple open-circuit faults in the controlled power switches of converters in half of a fundamental period of those currents. The implementation of this diagnostic approach only requires two output currents of the inverter. Therefore, no additional sensors are needed other than the ones already used by the control system of a drive based on this type of converter. Moreover, through the normalization of currents, the diagnosis is independent of the load level of the converter. The performance and effectiveness of the proposed diagnostic technique are validated by experimental results obtained under steady-state and transient conditions.

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

Automatic Command Mode Transition Strategy of Direct Power Control for PMSG MV Offshore Wind Turbines (자동 지령모드절환 기능을 갖춘 PMSG MV 해상 풍력 발전기의 직접전력제어 방법)

  • Kwon, Gookmin;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.238-248
    • /
    • 2016
  • In this study, an automatic command mode transition strategy of direct power control (DPC) is proposed for permanent magnet synchronous generators (PMSGs) medium-voltage (MV) offshore wind turbines (WTs). Benchmarking against the control methods are performed based on a three-level neutral-point-clamped (NPC) back-to-back type voltage source converter (VSC). The ramping rate criterion of complex power is utilized to select the switching vector in DPC for a three-level NPC converter. With a grid command and an MPPT mode transition strategy, the proposed control method automatically controls the generated output power to satisfy a grid requirement from the hierarchical wind farm controller. The automatic command mode transition strategy of DPC is confirmed through PLECS simulations based on Matlab. The simulation result of the automatic mode transition strategy shows that the proposed control method of VOC and DPC achieves a much shorter transient time of generated output power than the conventional control methods of MPPT and VOC under a step response. The proposed control method helps provide a good dynamic performance for PMSGs MV offshore WTs, thereby generating high quality output power.

A Hardware Architecture for Retaining the Connectivity in Gray-Scale Image (그레이 레벨 연결성 복원 하드웨어 구조)

  • 김성훈;양영일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.23-28
    • /
    • 2002
  • In this paper, we have proposed the hardware architecture which implements the algorithm for retaining the connectivity which prevents the disconnection in the gray-scale image thinning. To extract the skeleton from the image in a real time, it is necessary to examine the connectivity of the skeleton in a real time. The proposed architecture finds the connectivity number in the 4-clock period. The architecture consists of three blocks, PS(Parallel to Serial) Converter and Stare Generator and Ridge Checker. The PS Converter changes the 3$\times$3 gray level image to four sets of image pixels. The State Generator examines the connectivity of the central pixel by searching the data from the PS Converter. The Ridge Checker determines whether the central pixel is on the skeleton or not. The proposed architecture finds the connectivity of the central pixel in a 3$\times$3 gray level image in the 4-clocks. The total circuits are verified by the design tools and operate correctly.

  • PDF

Implementation of Multilevel Boost DC-Link Cascade based Reversing Voltage Inverter for Low THD Operation

  • Rao, S. Nagaraja;Kumar, D.V. Ashok;Babu, Ch. Sai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1528-1538
    • /
    • 2018
  • In this paper, configuration of $1-{\phi}$ seven-level boost DC-link cascade based reversing voltage multilevel inverter (BDCLCRV MLI) is proposed for uninterrupted power supply (UPS) applications. It consists of three level boost converter, level generation unit and full bridge circuit for polarity generation. When compared with conventional boost cascaded H-bridge MLI configurations, the proposed system results in reduction of DC sources, reduced power switches and gate drive requirements. Inverter switching is accomplished by providing appropriate switching angles that is generated by any optimization switching angle techniques. Here, round modulation control (RMC) method is taken as the optimization method and switching angles are derived and the same is compared with various switching angles methods i.e., equal-phase (EP) method, and half-equal-phase (HEP) method which results in improved quality of obtained AC power with lowest total harmonic distortion (THD). Reduction in DC sources and switch count makes the system more cost effective. A simulation and prototype model of $1-{\phi}$ seven-level BDCLCRV MLI system is developed and its performance is analyzed for various operating conditions.

Carrier Phase-Shift PWM to Reduce Common-Mode Voltage for Three-Level T-Type NPC Inverters

  • Nguyen, Tuyen D.;Phan, Dzung Quoc;Dao, Dat Ngoc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1197-1207
    • /
    • 2014
  • Common-mode voltage (CMV) causes overvoltage stress to winding insulation and damages AC motors. CMV with high dv/dt causes leakage currents, which create noise problems for equipment installed near the converter. This study proposes a new pulse-width modulation (PWM) strategy for three-level T-type NPC inverters. This strategy substantially eliminates CMV. The principle for selecting suitable triangle carrier signals for the three-level T-type NPC is described. The proposed method can mitigate the peak value of CMV by 50% compared with the phase disposition pulse-width modulation method. Furthermore, the proposed method exhibits better harmonic spectrum and lower root mean square value for the CMV than those of the reduced-CMV method on the basis of the phase opposition disposition PWM scheme with modulation index higher than 0.5. The proposed modulation can easily be implemented using software without any additional hardware modifications. Both simulation and experimental results demonstrate that the proposed carrier phase-shift PWM method has good output waveform performance and reduces CMV.