• Title/Summary/Keyword: Three Dimensional Levee Line

Search Result 3, Processing Time 0.018 seconds

Construction of a artificial levee line in river zones using LiDAR Data (라이다 자료를 이용한 하천지역 인공 제방선 추출)

  • Choung, Yun-Jae;Park, Hyeon-Cheol;Jo, Myung-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.185-185
    • /
    • 2011
  • Mapping of artificial levee lines, one of major tasks in river zone mapping, is critical to prevention of river flood, protection of environments and eco systems in river zones. Thus, mapping of artificial levee lines is essential for management and development of river zones. Coastal mapping including river zone mapping has been historically carried out using surveying technologies. Photogrammetry, one of the surveying technologies, is recently used technology for national river zone mapping in Korea. Airborne laser scanning has been used in most advanced countries for coastal mapping due to its ability to penetrate shallow water and its high vertical accuracy. Due to these advantages, use of LiDAR data in coastal mapping is efficient for monitoring and predicting significant topographic change in river zones. This paper introduces a method for construction of a 3D artificial levee line using a set of LiDAR points that uses normal vectors. Multiple steps are involved in this method. First, a 2.5-dimensional Delaunay triangle mesh is generated based on three nearest-neighbor points in the LiDAR data. Second, a median filtering is applied to minimize noise. Third, edge selection algorithms are applied to extract break edges from a Delaunay triangle mesh using two normal vectors. In this research, two methods for edge selection algorithms using hypothesis testing are used to extract break edges. Fourth, intersection edges which are extracted using both methods at the same range are selected as the intersection edge group. Fifth, among intersection edge group, some linear feature edges which are not suitable to compose a levee line are removed as much as possible considering vertical distance, slope and connectivity of an edge. Sixth, with all line segments which are suitable to constitute a levee line, one river levee line segment is connected to another river levee line segment with the end points of both river levee line segments located nearest horizontally and vertically to each other. After linkage of all the river levee line segments, the initial river levee line is generated. Since the initial river levee line consists of the LiDAR points, the pattern of the initial river levee line is being zigzag along the river levee. Thus, for the last step, a algorithm for smoothing the initial river levee line is applied to fit the initial river levee line into the reference line, and the final 3D river levee line is constructed. After the algorithm is completed, the proposed algorithm is applied to construct the 3D river levee line in Zng-San levee nearby Ham-Ahn Bo in Nak-Dong river. Statistical results show that the constructed river levee line generated using a proposed method has high accuracy in comparison to the ground truth. This paper shows that use of LiDAR data for construction of the 3D river levee line for river zone mapping is useful and efficient; and, as a result, it can be replaced with ground surveying method for construction of the 3D river levee line.

  • PDF

Mapping Man-Made Levee Line Using LiDAR Data and Aerial Orthoimage (라이다 데이터와 항공 정사영상을 활용한 인공 제방선 지도화)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Chung, Youn-In;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.84-93
    • /
    • 2011
  • Levee line mapping is critical to the protection of environments in river zones, the prevention of river flood and the development of river zones. Use of the remote sensing data such as LiDAR and aerial orthoimage is efficient for river mapping due to their accessibility and higher accuracy in horizontal and vertical direction. Airborne laser scanning (LiDAR) has been used for river zone mapping due to its ability to penetrate shallow water and its high vertical accuracy. Use of image source is also efficient for extraction of features by analysis of its image source. Therefore, aerial orthoimage also have been used for river zone mapping tasks due to its image source and its higher accuracy in horizontal direction. Due to these advantages, in this paper, research on three dimensional levee line mapping is implemented using LiDAR and aerial orthoimage separately. Accuracy measurement is implemented for both extracted lines generated by each data using the ground truths and statistical comparison is implemented between two measurement results. Statistical results show that the generated 3D levee line using LiDAR data has higher accuracy than the generated 3D levee line using aerial orthoimage in horizontal direction and vertical direction.

Analysis of Changes of Seepage Line on Straight and Curved Levee (하천제방 직선부 및 만곡부의 침윤선 변화 분석)

  • Lee, Seung-Ho;Kang, Hyoo-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.101-106
    • /
    • 2009
  • In this study we analyzed the seepage characteristics of meandering section of rivers commonly seen in domestic terrain. The seepage analysis is designed to be more realistic by considering a tangent and meandering section of levee. The levee was idealized to reflect the relevant characteristics by considering the curved angle of 90 degrees and 130 degrees in the spatial frequencies, water elevation conditions, and hydraulic conductivities. Seepage analysis becomes more detailed and precise with the seepage curve shape which is interpreted to indicate the flow of three-dimensional numerical analysis program using VisualFEA. As a result of the analysis, it is shown that the water level in the straight levee was constant, regardless of hydraulic conductivities, and the total head in the meandering section was increased by the overlapping of seepage. Consequently, it is found that the total head was increased more significantly in the case of 90 degrees curved levees than 130 degrees, and the total head showed similar characteristics In the straight levee.