• Title/Summary/Keyword: Thompson model

Search Result 50, Processing Time 0.019 seconds

Numerical Study on the Radiation of Intake Noise from Internal Combustion Engine by Using Essentially Non-Oscillatory Schemes (ENO기법을 이용한 연소 엔진 흡기계 소음의 방사에 관한 수치적 연구)

  • 김용석;이덕주
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.239-250
    • /
    • 1998
  • Traditionally, intake noise from internal combustion engine has not recevied much attention compared to exhaust noise. But nowadays, intake noise is a major contributing factor to automotive passenger compartment noise levels. The main objective of this paper is to identify the mechanism of generation, propagation and radiation of the intake noise. With a simplest geometric model, one of the main noise sources for the intake stroke is found to be the pressure surge, which is generated after intake valve closing. The pressure surge, which has the nonlinear acoustic behavior, propagates and radiates with relatively large amplitude. In this paper, unsteady compressible Navier-Stokes equations are employed for the intake stroke of axisymmetric model having a single moving cylinder and a single moving intake valve. To simulate the periodic motion of the piston and the valve, unsteady deforming mesh algorithm is employed and Thompson's non-reflecting boundary condition is applied to the radiation field. In order to resolve the small amplitude waves at the radiation field, essentially non-oscillatory(ENO) schemes with an artificial compression method (ACM) are used.

  • PDF

Drying Equations of Sarcodon Aspratus (능이버섯의 건조 방정식)

  • Keum, D.H.;Ro, J.G.;Jung, T.Y.;Hong, S.R.;Park, K.M.;Kim, H.;Han, J.W.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • This study was performed to determine drying equations of sarcodon aspratus. Drying tests for sarcodon aspratus were conducted in an experimental dryer equiped with an air conditioning unit. The drying tests were performed at three air temperatures of 30$^{\circ}C$, 40$^{\circ}C$ and 50$^{\circ}C$, and two relative humidities of 30% and 50%. Measured moisture ratio data were fitted with the selected four drying models(Page, Thompson, Lewis and simplified diffusion models) using stepwise multiple regression analysis. When the coefficients of determination and root mean square errors of moisture ratio were evaluated for four drying models, the Page model was found to fit adequately to all the drying test data with coefficient of determination of 0.9996 and RMSE of 0.00523.

Preclinical study of a novel ingestible bleeding sensor for upper gastrointestinal bleeding

  • Kimberly F. Schuster;Christopher C. Thompson;Marvin Ryou
    • Clinical Endoscopy
    • /
    • v.57 no.1
    • /
    • pp.73-81
    • /
    • 2024
  • Background/Aims: Upper gastrointestinal bleeding (UGIB) is a life-threatening condition that necessitates early identification and intervention and is associated with substantial morbidity, mortality, and socioeconomic burden. However, several diagnostic challenges remain regarding risk stratification and the optimal timing of endoscopy. The PillSense System is a noninvasive device developed to detect blood in patients with UGIB in real time. This study aimed to assess the safety and performance characteristics of PillSense using a simulated bleeding model. Methods: A preclinical study was performed using an in vivo porcine model (14 animals). Fourteen PillSense capsules were endoscopically placed in the stomach and blood was injected into the stomach to simulate bleeding. The safety and sensitivity of blood detection and pill excretion were also investigated. Results: All the sensors successfully detected the presence or absence of blood. The minimum threshold was 9% blood concentration, with additional detection of increasing concentrations of up to 22.5% blood. All the sensors passed naturally through the gastrointestinal tract. Conclusions: This study demonstrated the ability of the PillSense System sensor to detect UGIB across a wide range of blood concentrations. This ingestible device detects UGIB in real time and has the potential to be an effective tool to supplement the current standard of care. These favorable results will be further investigated in future clinical studies.

Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation (비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1158-1174
    • /
    • 1988
  • A numerical technique is developed for the solution of fully developed turbulent recirculating flow in the passage of variable area using the non-orthogonal coordinate transformation. In the numerical analysis, primitive pressure-velocity finite difference equations were solved by SIMPLER algorithm with 2-equation turbulence model and algebraic stress model (ASM). QUICK scheme on the differencing of convective terms which is free from the inaccuracies of numerical diffusion has been applied to the variable grids and the results compared with those from HYBRID scheme. In order to test the effect of streamline curvatures on turbulent diffusion Lee and Choi streamline curvature correction model which has been obtained by modifying the Leschziner and Rodi's model is testes. The ASM was also employed and the results are compared to those from another turbulence model. The results show that difference of convective differencing schemes and turbulence models give significant differences in the prediction of velocity fields in the expansion region and outlet region of the combustor, however show little differences in the parallel flow region.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

A proposal for an approach for meso scale modeling for concrete based on rigid body spring model

  • Zhao, Chao;Shi, Zheng;Zhong, Xingu
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.283-295
    • /
    • 2021
  • Existing meso-scale models of concrete need to refine the mesh grids of aggregate and cement mortar, which may greatly reduce the computational efficiency. To overcome this problem, a novel meso-scale modeling strategy, which is based on rigid body spring method and Voronoi diagram, is proposed in this study to establish the meso-scale model of concrete. Firstly, establish numerical aggregate models according to user-defined programs. Circle aggregates are adopted due to their high efficiency in generation and packing process, and the grading of aggregate are determined according to the distribution curve proposed by Full and Thompson; Secondly, extract the centroids of aggregates, and then develop the Voronoi diagram in which aggregate centroids are defined as initial scatters; Finally, establish the rigid body spring model for concrete based on the Voronoi diagram. Aggregates are represented by rigid blocks, and assumed to be unbreakable. Cement mortar is concentrated into the interface between adjacent blocks and represented by two uniform springs. The number of grids is consistent with that of aggregates in specimens, and no mesh-refinement of aggregates and cement mortar is required. The accuracy and efficiency of the proposed modeling strategy are firstly identified by comparing the numerical results with the experimental ones, and then the applicability of the proposed strategy with different volume percentage occupied by aggregates is investigated.

IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network

  • Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.46-63
    • /
    • 2024
  • One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.

Wave Models and Experimental Studies of Beam-plate-beam Coupled Systems for a Mid-frequency Analysis (중주파수 대역 해석을 위한 Beam-plate-beam 연성 구조물의 웨이브 모형 연구와 시험적 규명)

  • Yoo, Ji-Woo;Thompson, D.J.;Ferguson, N.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.121-129
    • /
    • 2007
  • There has been much effort to find suitable methods for structural analysis in the mid-frequency region where traditional low frequency methods have increasing uncertainties whilst statistical energy analysis is not strictly applicable. Systems consisting of relatively stiff beams coupled to flexible plates have a particularly broad mid-frequency region where the beams support only a few modes whilst the plate has a high modal density and modal overlap. A system of two parallel beams coupled to a plate is investigated based on the wave method, which is an approximate method. Muller's method is utilised for obtaining complex roots of a dispersion wave equation, which does not converge in the conventional wave method based on a simple iteration. The wave model is extended from a single-beam-plate system, to a plate with two identical beams which is modelled using a symmetric-antisymmetric technique. The important hypothesis that the coupled beam wavenumber is sufficiently smaller than the plate free wavenumber is experimentally verified. Finally, experimental results such as powers and energy ratios show the validity of the analytical wave models.

Gastrulation : Current Concepts and Implications for Spinal Malformations

  • Thompson, Dominic Nolan Paul
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.3
    • /
    • pp.329-339
    • /
    • 2021
  • It has been recognised for over a century that the events of gastrulation are fundamental in determining, not only the development of the neuraxis but the organisation of the entire primitive embryo. Until recently our understanding of gastrulation was based on detailed histological analysis in animal models and relatively rare human tissue preparations from aborted fetuses. Such studies resulted in a model of gastrulation that neurosurgeons have subsequently used as a means of trying to explain some of the congenital anomalies of caudal spinal cord and vertebral development that present in paediatric neurosurgical practice. Recent advances in developmental biology, in particular cellular biology and molecular genetics have offered new insights into very early development. Understanding the processes that underlie cellular interactions, gene expression and activation/inhibition of signalling pathways has changed the way embryologists view gastrulation and this has led to a shift in emphasis from the 'descriptive and morphological' to the 'mechanistic and functional'. Unfortunately, thus far it has proved difficult to translate this improved knowledge of normal development, typically derived from non-human models, into an understanding of the mechanisms underlying human malformations such as the spinal dysraphisms and anomalies of caudal development. A paediatric neurosurgeons perspective of current concepts in gastrulation is presented along with a critical review of the current hypotheses of human malformations that have been attributed to disorders of this stage of embryogenesis.

MODELING MEASURES OF RISK CORRELATION FOR QUANTITATIVE FLOAT MANAGEMENT OF CONSTRUCTION PROJECTS

  • Richard C. Jr. Thompson;Gunnar Lucko
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.459-466
    • /
    • 2013
  • Risk exists in all construction projects and resides among the collection of subcontractors and their array of individual activities. Wherever risk resides, the interrelation of participants to one another becomes paramount for the way in which risk is measured. Inherent risk becomes recognizable and quantifiable within network schedules in the form of consuming float - the flexibility to absorb delays. Allocating, owning, valuing, and expending such float in network schedules has been debated since the inception of the critical path method itself. This research investigates the foundational element of a three-part approach that examines how float can be traded as a commodity, a concept whose promise remains unfulfilled for lack of a holistic approach. The Capital Asset Pricing Model (CAPM) of financial portfolio theory, which describes the relationship between risk and expected return of individual stocks, is explored as an analogy to quantify the inherent risk of the participants in construction projects. The inherent relationship between them and their impact on overall schedule performance, defined as schedule risk -the likelihood of failing to meet schedule plans and the effect of such failure, is matched with the use of CAPM's beta component - the risk correlation measure of an individual stock to that of the entire market - to determine parallels with respect to the inner workings and risks represented by each entity or activity within a schedule. This correlation is the initial theoretical extension that is required to identify where risk resides within construction projects, allocate and commoditize it, and achieve actual tradability.

  • PDF