• Title/Summary/Keyword: Thomas model

Search Result 165, Processing Time 0.027 seconds

Neoadjuvant chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: Meta-analysis and trial sequential analysis of randomized controlled trials

  • Shahab Hajibandeh;Shahin Hajibandeh;Christina Intrator;Karim Hassan;Mantej Sehmbhi;Jigar Shah;Eshan Mazumdar;Ambareen Kausar;Thomas Satyadas
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.27 no.1
    • /
    • pp.28-39
    • /
    • 2023
  • We aimed to compare resection and survival outcomes of neoadjuvant chemoradiotherapy (CRT) and immediate surgery in patients with resectable pancreatic cancer (RPC) or borderline resectable pancreatic cancer (BRPC). In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement standards, a systematic review of randomized controlled trials (RCTs) was conducted. Random effects modeling was applied to calculate pooled outcome data. Likelihood of type 1 or 2 errors in the meta-analysis model was assessed by trial sequential analysis. A total of 400 patients from four RCTs were included. When RPC and BRPC were analyzed together, neoadjuvant CRT resulted in a higher R0 resection rate (risk ratio [RR]: 1.55, p = 0.004), longer overall survival (mean difference [MD]: 3.75 years, p = 0.009) but lower overall resection rate (RR: 0.83, p = 0.008) compared with immediate surgery. When RPC and BRPC were analyzed separately, neoadjuvant CRT improved R0 resection rate (RR: 3.72, p = 0.004) and overall survival (MD: 6.64, p = 0.004) of patients with BRPC. However, it did not improve R0 resection rate (RR: 1.18, p = 0.13) or overall survival (MD: 0.94, p = 0.57) of patients with RPC. Neoadjuvant CRT might be beneficial for patients with BRPC, but not for patients with RPC. Nevertheless, the best available evidence does not include contemporary chemotherapy regimens. Patients with RPC and those with BRPC should not be combined in the same cohort in future studies.

Influence of lateralized versus medialized reverse shoulder arthroplasty design on external and internal rotation: a systematic review and meta-analysis

  • Kevin A. Hao;Robert J. Cueto;Christel Gharby;David Freeman;Joseph J. King;Thomas W. Wright;Diana Almader-Douglas;Bradley S. Schoch;Jean-David Werthel
    • Clinics in Shoulder and Elbow
    • /
    • v.27 no.1
    • /
    • pp.59-71
    • /
    • 2024
  • Background: Restoration of external (ER) and internal rotation (IR) after Grammont-style reverse shoulder arthroplasty (RSA) is often unreliable. The purpose of this systematic review was to evaluate the influence of RSA medio-lateral offset and subscapularis repair on axial rotation after RSA. Methods: We conducted a systematic review of studies evaluating axial rotation (ER, IR, or both) after RSA with a defined implant design. Medio-lateral implant classification was adopted from Werthel et al. Meta-analysis was conducted using a random-effects model. Results: Thirty-two studies reporting 2,233 RSAs were included (mean patient age, 72.5 years; follow-up, 43 months; 64% female). The subscapularis was repaired in 91% (n=2,032) of shoulders and did not differ based on global implant lateralization (91% for both, P=0.602). On meta-analysis, globally lateralized implants achieved greater postoperative ER (40° [36°-44°] vs. 27° [22°-32°], P<0.001) and postoperative improvement in ER (20° [15°-26°] vs. 10° [5°-15°], P<0.001). Lateralized implants with subscapularis repair or medialized implants without subscapularis repair had significantly greater postoperative ER and postoperative improvement in ER compared to globally medialized implants with subscapularis repair (P<0.001 for both). Mean postoperative IR was reported in 56% (n=18) of studies and achieved the minimum necessary IR in 51% of lateralized (n=325, 5 cohorts) versus 36% (n=177, 5 cohorts) of medialized implants. Conclusions: Lateralized RSA produces superior axial rotation compared to medialized RSA. Lateralized RSA with subscapularis repair and medialized RSA without subscapularis repair provide greater axial rotation compared to medialized RSA with subscapularis repair. Level of evidence: 2A.

Effect of K2CO3 Loading on the Adsorption Performance of Inorganic Adsorbent for H2S Removal (K2CO3 첨가에 따른 H2S 제거용 무기계 흡착제의 흡착성능 영향에 관한 연구)

  • Jang, Kil Nam;Song, Young Sang;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.286-293
    • /
    • 2017
  • The goal of this paper was to improve the performance of the adsorbent to remove $H_2S$. Pellet type adsorbents were prepared by using four kinds of materials ($Fe_2O_3$, $Ca(OH)_2$, Activated carbon, $Al(OH)_2)$ for use as a basic carrier. As the results of $H_2S$ adsorption tests, $Fe_2O_3$ and Activated Carbon improved the adsorption performance of $H_2S$ by 1.5 ~ 2 times, and $Ca(OH)_2$ and $Al(OH)_2$ showed no effect on $H_2S$ adsorption performance. Four basic materials were as carriers, and 5 wt% of KI, KOH and $K_2CO_3$ were added on the carriers, respectively. As the results of $H_2S$ adsorption tests, adsorbent containing $K_2CO_3$ showed the best performance. As a result of $H_2S$ adsorption test with varying $K_2CO_3$ content from 5 to 30 wt%, it was confirmed that adsorption performance was increased up to 20 wt% of $K_2CO_3$ and adsorption performance decreased to 30 wt%. The $H_2S$ adsorption performance was modeled by using Thomas model with varying $K_2CO_3$ contents and the results were used for the adsorption tower design. It was shown that the experimental values and the simulated values were in good agreement with the contents range of $K_2CO_3$ up to 20 wt%. Based on these results, it is expected that not only the adsorption performance of $H_2S$ adsorbent is improved but also life time of the adsorbent is increased.

Effects of Conflict Management Strategy Within Supply Chain on Partnership and Performance (공급망 내 갈등관리전략이 파트너십과 성과에 미치는 영향)

  • Ham, Yoon-Hee;Song, Sang-Hwa
    • Korean small business review
    • /
    • v.42 no.1
    • /
    • pp.79-105
    • /
    • 2020
  • While individual enterprises with different objectives each other within supply chains require a variety of resources to achieve their own seeking goals and performances, it is necessary to form interdependent relationships among the enterprises to secure the resources what they need, as the individual enterprises are supposed to have limitations on such as time, space and cost to secure all the resources. In this process, conflict possibilities rise and opportunistic behaviors increase due to those environmental factors such as unbalanced information among enterprises, limited rationality, pursuit of interests, and risk aversion. Those existing studies on conflicts in the field of supply chains have limitations in that they failed to present specific conflict management strategies based on the conflict types from the perspective of the conflict resolution mechanism as the studies have made only focused on investigating the causes of conflicts and the impact of conflicts on performance. In this study, therefore, it used the TKI model of Kilmann and Thomas(1977) to subdivide the conflict management strategies in the process of transactions within supply chains by enterprises, and looked into the impact on partnership and performance according to each strategy. As the results, it showed that those types of conflict management strategies such as concession type and cooperation type had a positive(+) impact on the relationship commitment as a factor of partnership, and it was identified that the relationship commitment had a positive(+) impact on performance. In other words, it can be considered that the enterprises making use of the concession type & the cooperation type conflict management strategies under the situation of conflict would be able to have a very positive impact on their performances if they can make good relationship commitment such as investments in and efforts for the sustainable relationship along with the conflict management, while recognizing the importance of relationship. The most important meaning of this study lies on in terms of that it would be contributable to strengthening the partnership between enterprises and minimizing the risk of supply chains caused by conflicts through these results from the study.

Optimum Dumping Rate of Biodegradable Liquid Waste in Ocean Disposal (분해성 액상폐기물의 해양처리시 최적 투기율)

  • LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.198-207
    • /
    • 1990
  • Among the biodegradable liquid waste treatment and disposal methods, ocean dumping is a cost-effective and productive manner considering reuse point of view However, when biodegradable liquid waste is dumped in the ocean, oxygen consumption by the decomposition of organic matter must be considered. The purpose of this study is to determine the maximum allowable concentration and dumping rate in the southern waters of the East Sea based on dissolved oxygen level. Streeter and Phelps' model has been used to determine the maximum allowable concentration. Factors in this model, deoxygenation constants and reaeration coefficients, have been determined by appling oxygen consumption method and closed system model. Deoxygenation constants and reaeration coefficients from surface to each standard depth are $0.24\~0.29/day\;and\;0.03\~0.39/day$ in summer, $0.17\~0.20/day\;and\;0.04\~0.56/day$ in winter, respectively. The allowable organic matter concentration($mgBOD/\iota$) to the dissolved oxy-gen sag value of $5mg/{\iota}$ is represented $17.23\times(H)^{-0.37}$ in summer, and $64.96\times(H)^{-0.52}$ in winter by mixing depth(H, m). Csanady's experiment has been applied to estimate the optimum dumping rate. The optimum dumping rate($R,\;m^3/sec$) can be written as a product of the beam(b, m) and the draft(h, m) of vessel, and biochemical oxygen demand of waste($L_n,\;mg/{\iota}$) $R=275{\times}bh^{0.63}L_n^{-1}$ in summer $=745{\times}bh^{0.48}L_n^{-1}$ in winter. The difference of dumping rate between in summer and winter is due to the oxygen distribution.

  • PDF

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Anomaly Detection for User Action with Generative Adversarial Networks (적대적 생성 모델을 활용한 사용자 행위 이상 탐지 방법)

  • Choi, Nam woong;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.43-62
    • /
    • 2019
  • At one time, the anomaly detection sector dominated the method of determining whether there was an abnormality based on the statistics derived from specific data. This methodology was possible because the dimension of the data was simple in the past, so the classical statistical method could work effectively. However, as the characteristics of data have changed complexly in the era of big data, it has become more difficult to accurately analyze and predict the data that occurs throughout the industry in the conventional way. Therefore, SVM and Decision Tree based supervised learning algorithms were used. However, there is peculiarity that supervised learning based model can only accurately predict the test data, when the number of classes is equal to the number of normal classes and most of the data generated in the industry has unbalanced data class. Therefore, the predicted results are not always valid when supervised learning model is applied. In order to overcome these drawbacks, many studies now use the unsupervised learning-based model that is not influenced by class distribution, such as autoencoder or generative adversarial networks. In this paper, we propose a method to detect anomalies using generative adversarial networks. AnoGAN, introduced in the study of Thomas et al (2017), is a classification model that performs abnormal detection of medical images. It was composed of a Convolution Neural Net and was used in the field of detection. On the other hand, sequencing data abnormality detection using generative adversarial network is a lack of research papers compared to image data. Of course, in Li et al (2018), a study by Li et al (LSTM), a type of recurrent neural network, has proposed a model to classify the abnormities of numerical sequence data, but it has not been used for categorical sequence data, as well as feature matching method applied by salans et al.(2016). So it suggests that there are a number of studies to be tried on in the ideal classification of sequence data through a generative adversarial Network. In order to learn the sequence data, the structure of the generative adversarial networks is composed of LSTM, and the 2 stacked-LSTM of the generator is composed of 32-dim hidden unit layers and 64-dim hidden unit layers. The LSTM of the discriminator consists of 64-dim hidden unit layer were used. In the process of deriving abnormal scores from existing paper of Anomaly Detection for Sequence data, entropy values of probability of actual data are used in the process of deriving abnormal scores. but in this paper, as mentioned earlier, abnormal scores have been derived by using feature matching techniques. In addition, the process of optimizing latent variables was designed with LSTM to improve model performance. The modified form of generative adversarial model was more accurate in all experiments than the autoencoder in terms of precision and was approximately 7% higher in accuracy. In terms of Robustness, Generative adversarial networks also performed better than autoencoder. Because generative adversarial networks can learn data distribution from real categorical sequence data, Unaffected by a single normal data. But autoencoder is not. Result of Robustness test showed that he accuracy of the autocoder was 92%, the accuracy of the hostile neural network was 96%, and in terms of sensitivity, the autocoder was 40% and the hostile neural network was 51%. In this paper, experiments have also been conducted to show how much performance changes due to differences in the optimization structure of potential variables. As a result, the level of 1% was improved in terms of sensitivity. These results suggest that it presented a new perspective on optimizing latent variable that were relatively insignificant.

Enact of Ischemic Preconditioning on Myocardial Protection A Comparative Study between Normothermic and Moderate Hypothermic Ischemic Hearts Induced by Cardioplegia in Rats - (허혈 전처치가 심근보호에 미치는 영향 -적출 쥐 심장에서 상온에서의 심근허혈과 중등도 제체온하에서 심근정지액 사용 시의 비교 연구-)

  • 조성준;황재준;김학제
    • Journal of Chest Surgery
    • /
    • v.36 no.4
    • /
    • pp.242-254
    • /
    • 2003
  • Most of the studies conducted have investigated the beneficial effects of ischemic preconditioning on normothermic myocardial ischemia. However, the effect of preconditioning could be attenuated through the use of multidose cold cardioplegia as practiced in contemporary clinical heart surgical procedures. The purpose of this study was to investigate whether preconditioning improves postischemic cardiac function in a model of 25℃ moderate hypothermic ischemic heart induced by cold cardioplegia in isolated rat hearts. Material and Method: The isolated Sprague-Dawley rat hearts were randomly assigned to four groups. All hearts were perfused at 37℃ for 20 minutes with Krebs-Henseleit solution before the baseline hemodynamic data were obtained. Group 1 consisted of preconditioned hearts that received 3 minutes of global ischemic preconditioning at 37℃, followed by 5 minutes of reperfusion before 120 minutes of cardioplegic arrest (n=6). Cold (4℃) St. Thomas Hospital cardioplegia solution was infused to induce cardioplegic arrest. Maintaining the heart at 25℃, infusion of the cardioplegia solution was repeated every 20 minutes throughout the 120 minutes of ischemic period. Group 2 consisted of control hearts that underwent no manipulations between the periods of equilibrium and 120 minutes of cardioplegic arrest (n=6). After 2 hours of cardioplegic arrest, Krebs solution was infused and hemodynamic data were obtained for 30 minutes (group 1, 2: cold cardioplegia group). Group 3 received two episodes of ischemic preconditioning before 30 min of 37℃ normothermic ischemia and 30 minutes of reperfusion (n=6). Group 4 served as ischemic controls for group 3 (group 3, 4: warm ischemia group). Result: Preconditioning did not influence parameters such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), rate-pressure product (RPP) and left ventricular dp/dt (LV dp/dt) in the cold cardioplegia group. (p=NS) However, preconditioning before warm ischemia attenuated the ischemia induced cardiac dysfunction, improving the LVSP, LVEDP, RPP, and LVdp/dt. Less leakage of CPK and LDH were observed in the ischemic preconditioning group compared to the control group (p<0.05). Conclusion: Ischemic preconditioning improved postischemic cardiac function after warm ischemia, but did not protect cold cardioplegic hearts.

Effect of Ischemic Preconditioning on Myocardial Protection - A Comparative Study between Normothermic and Moderate Hypothermic Ischemic Hearts Induced by Cardioplegia in Rats - (허혈 전처치가 심근보호에 미치는 영향 - 적출 쥐 심장에서 상온에서의 심근허혈과 중등도 저체온하에서 심근정지액 사용 시의 비교 연구 -)

  • 조성준;황재준;김학제
    • Journal of Chest Surgery
    • /
    • v.36 no.5
    • /
    • pp.242-254
    • /
    • 2003
  • Background: Most of the studies conducted have investigated the beneficial effects of ischemic preconditioning on normothermic myocardial ischemia. However, the effect of preconditioning could be attenuated through the use of multidose cold cardioplegia as practiced in contemporary clinical heart surgical procedures. The purpose of this study was to investigate whether preconditioning improves postischemic cardiac function in a model of $25^{\circ}C$ moderate hypothermic ischemic heart induced by cold cardioplegia in isolated rat hearts. Material and Method: The isolated Sprague-Dawley rat hearts were randomly assigned to four groups All hearts were perfused at 37$^{\circ}C$ for 20 minutes with Krebs-Henseleit solution before the baseline hemodynamic data were obtained, Group 1 consisted of preconditioned hearts that received 3 minutes of global ischemic preconditioning at 37$^{\circ}C$, followed by 5 minutes of reperfusion before 120 minutes of cardioplegic arrest (n=6). Cold (4$^{\circ}C$) St. Thomas Hospital cardioplegia solution was infused to induce cardioplegic arrest. Maintaining the heart at $25^{\circ}C$, infusion of the cardioplegia solution was repeated every 20 minutes throughout the 120 minutes of ischemic period. Group 2 consisted of control hearts that underwent no manipulations between the periods of equilibrium and 120 minutes of cardioplegic arrest (n=6). After 2 hours of cardioplegic arrest, Krebs solution was infused and hemodynamic data were obtained for 30 minuts (group 1, 2: cold cardioplegia group). Group 3 received two episodes of ischemic preconditioning before 30 min of 37$^{\circ}C$ normothermic ischemia and 30 minutes of reperfusion (n=6) Group 4 soloed as ischemic controls for group 3 (group 3, 4: warm ischemia group). Result: Preconditioning did not influence parameters such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), rate-pressure product (RPP) and left ventricular dp/dt (LV dp/dt) in the cold cardioplegia group. (p=NS) However, preconditioning before warm ischemia attenuated the ischemia induced cardiac dysfunction, Improving the LVSP, LVEDP, RPP, and LV dp/dt. Less leakage of CPK and LDH were observed in the ischemic preconditioning group compared to the control group (p<0.05). Conclusion: Ischemic preconditioning improved postischemic cardiac function after warm ischemia, but did not protect cold cardioplegic hearts.