• Title/Summary/Keyword: Third electrode

Search Result 70, Processing Time 0.022 seconds

A Study on the Selections of Optimized Process Conditions in the Wire Electric Discharge (와이어방전 가공시 최적 가공조건 선정에 관한 연구)

  • 김선진;성백섭;목포대;정성택;반재삼;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.631-636
    • /
    • 2002
  • The purpose of this study was to present the method to choose the optimization machining condition for the wire electric machine. This was completed by examining the ever- changing quality of the material and by improving the function of the wire electric discharge machine. Precision metal mold products and the unmanned wire electric discharge machining system were used and then applied in industrial fields. This experiment uses the wire electric discharge machine with brass wire electrode of 0.25mm. To measure the precision of the machining surface, average values are obtained from 3 samples of measures of center-line average roughness by using a third dimension gauge and a stylus surface roughness gauge. In this experiment, we changed no-node voltage to 7 and 9, pulse-on-time to $6\mu\textrm{s}$, $8\mu\textrm{s}$ and $10\mu\textrm{s}$, pulse-off-time to $8\mu\textrm{s}$, $10\mu\textrm{s}$ and $13\mu\textrm{s}$, and experimented on wire tension at room temperature by 1000gf, 1200gf, and 1400gf, respectively

  • PDF

Evaluation of Circle Machining Surface Roughness on the Process Conditions using Neural Network (신경회로망을 이용한 가공조건에 따른 원형가공 표면거칠리 평가)

  • Sung, Baek-Sup;Kim, Ill-Soo;Cha, Yong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • The purpose of this study was to present the method to choose the optimization machining condition for the wire electric machine. This was completed by examining the ever-changing quality of the material and by improving the function of the wire electric discharge machine. Precision metal mold products and the unmanned wire electric discharge machining system were used and then applied in industrial fields. This experiment uses the wire electric discharge machine with brass wire electrode of 0.25mm. To measure the precision of the machining surface, average values are obtained from 3 samples of measures of center-line average roughness by using a third dimension gauge and a stylus surface roughness gauge. In this experiment, we changed no-node voltage to 7 and 9, pulse-on-time to $6{\mu}s,\;8{\mu}s$ and $10{\mu}s$, pulse-off-time to $8{\mu}s,\;10{\mu}s$ and $13{\mu}s$, and experimented on wire tension at room temperature by 1000gf, 1200gf, and 1400gf, respectively.

Bioelectrical Impedance Analysis at Inner Forearms of the Human Body using Bioelectrical Impedance Measurement System

  • Kim, Jae-Hyung;Kim, Soo-Hong;Baik, Sung-Wan;Jeon, Gye-Rok
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1146-1153
    • /
    • 2016
  • The bioelectrical impedance (BI) at the inner forearms was measured using bioelectrical impedance measurement system (BIMS), which employs the multi-frequency and the two-electrode method. Experiments were performed as follows. First, while applying a constant alternating current of 800A to the inner region of the forearms, BI (Z) was measured at nineteen frequencies ranging from 5 to 500 kHz. The prediction marker (PM) was calculated for right and left forearm. The resistance (R) and the reactance (Xc) were simultaneously measured during impedance measurement. Second, a Cole-Cole plot (relationship between reactance and resistance) was obtained for left and right forearm, indicating the different characteristic frequencies (fc). Third, the phase angle was obtained, indicating strong dependence on the applied frequency.

The Development of Microwave Tissue Coagulator (마이크로파를 이용한 수술기의 개발)

  • Park, B.W.;Jeong, B.S.;Park, Mi-Gnon;Lee, S.B.;Son, W.J.;Jeong, D.G.;Yang, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.81-83
    • /
    • 1989
  • In surgery the hemostatic control is very important for the parenchymatous organs. These organs consist of the fragile and the blood content tissues such as liver, spleen and kidney, etc.. One of the control methods to solve this problem is to insert the mono polar typed needle electrode, which gathers the thermal effect of microwave, directly into tissues so as to coagulate and stop the hemorrhage. This method has same advantages: First, the range of the heat energy is limited. Second, the coagulation, the hemostatic characteristic, and stability are excellent. Third, more convenient operation is possible. This paper is aimed to manufacture the microwave tissue coagulation system and to suggest the new direction for development, hereafter.

  • PDF

Optimal Design of Electric Field Driven Liquid Crystal Fresnel Lens Using Taguchi's Method (다구찌 실험계획법을 이용한 액정 전계 프레넬 렌즈의 최적 설계)

  • Kim, Bong-Sik;Kim, Jong-Woon;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • A rigorous electro-optical simulation and ray tracing for an electric field driven liquid crystal Fresnel lens was proposed to obtain design parameters of the electrode pattern of the Fresnel lens. The optimal design was carried out using Taguchi's experimental method for 17.1"($368{\times}229.5$ mm) wide LCD panels with 9 views. For the calculation of the distribution of liquid crystal molecules and the optical transmission of the panel, finite difference method and extended Jones matrix method were used to deal effectively with highly nonlinear and complicated motional equations of the liquid crystal molecules and to obtain the oblique transmission characteristics of the LCD panel. As simulation results, the optimal lengths of the 3 electrodes of the Fresnel lens are 4.0 ${\mu}m$, 30 ${\mu}m$ and 83 ${\mu}m$, respectively, and the locations of the second and third electrodes are 32.9-33.0 ${\mu}m$ and 45.9-46.0 ${\mu}m$, respectively. The optimal applied voltage of the 3 electrodes are found to be 5.75 V, 7.80 V and 11.9 V, respectively.

Effect of Oxidation of Ni on the Microstructure of Ni/YSZ Anode and Crack Formation in YSZ Electrolyte Layer for SOFC (Ni의 산화가 고체산화물 연료전지용 Ni/YSZ 연료극의 미세조직과 전해질의 균열에 미치는 영향)

  • Lim, Jun-Sil;Choi, Jong-Joon;Kwon, Oh-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.805-811
    • /
    • 2006
  • The microstructural changes in Ni/YSZ anode substrate and crack formation during Ni oxidation were investigated. The composition of as-sintered anodes was 56 wt% NiO+44 wt% YSZ and that of electrolyte was 8 mol% yttria. After complete reduction, specimens were oxidized in $N_2$ + air at $600\sim800^{\circ}C$. Oxygen partial pressure was controlled in between 0.05 atm and 0.2 atm $O_2$. When the anode was oxidized, at higher than $690^{\circ}C$, three layers were formed in the specimens. The first was fully oxidized layer(NiO/YSZ), the second was a mixed layer and the third, near-intact layer. Under $640^{\circ}C$ such distinctive layers were not observed. Cracks formed at electrolyte layer when weight gain attained at $65\sim75%$ of the total gain due to complete oxidation despite of different oxidation temperature and oxygen partial pressure.

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Development of Bioelectric Impedance Measurement System Using Multi-Frequency Applying Method

  • Kim, J.H.;Jang, W.Y.;Kim, S.S.;Son, J.M.;Park, G.C.;Kim, Y.J.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.368-376
    • /
    • 2014
  • In order to measure the segmental impedance of the body, a bioelectrical impedance measurement system (BIMS) using multi-frequency applying method and two-electrode method was implemented in this study. The BIMS was composed of constant current source, automatic gain control, and multi-frequency generation units. Three experiments were performed using the BIMS and a commercial impedance analyzer (CIA). First, in order to evaluate the performance of the BIMS, four RC circuits connected with a resistor and capacitor in serial and/or parallel were composed. Bioelectrical impedance (BI) was measured by applying multi-frequencies -5, 10, 50, 100, 150, 200, 300, 400, and 500 KHz - to each circuit. BI values measured by the BIMS were in good agreement with those obtained by the CIA for four RC circuits. Second, after measuring BI at each frequency by applying multi-frequency to the left and right forearm and the popliteal region of the body, BI values measured by the BIMS were compared to those acquired by the CIA. Third, when the distance between electrodes was changed to 1, 3, 5, 7, 9, 11, 13, and 15 cm, BI by the BIMS was also compared to BI from the CIA. In addition, BI of extracellular fluid (ECF) was measured at each frequency ranging from 10 to 500 KHz. BI of intracellular fluid (ICF) was calculated by subtracting BI of ECF measured at 500 kHZ from BI measured at seven frequencies ranging from 50 to 500 KHz. BI of ICF and ECF decreased as the frequency increased. BI of ICF sharply decreased at frequencies above 300 KHz.

Consideration of Methods Evaluating the Growing Process of Stress Corrosion Cracking of the Sensitized 18-8 Austenitic Stainless Steel in High Temperature Water Based on Electric Circuit Theory: The Effects of Stress Factors

  • Tsukaue, Yasoji
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.103-111
    • /
    • 2007
  • The effect of stress factors on the growing process of stress corrosion cracking (SCC) of the sensitized 18-8 stainless steel in high temperature water was investigated using equations of crack growth rate derived from applying electric circuits to SCC corrosion paths. Three kinds of cross sections have to be considered when electric circuit is constructed using total current. The first is ion flow passage area, $S_{sol}$, of solution in crack, the second is total dissolving surface area, $S_{dis}$, of metal on electrode of crack tip and the third is dissolving cross section, $S_{met}$, of metal on grain boundary or in base metal or in welding metal. Stress may affect each area. $S_{sol}$ may depend on applied stress, $\sigma_{\infty}$, related with crack depth. $S_{dis}$ is expressed using a factor of $\varepsilon(K)$ and may depend on stress intensity factor, K only. SCC crack growth rate is ordinarily estimated using a variable of K only as stress factor. However it may be expected that SCC crack growth rate depends on both applied stress $\sigma_{\infty}$ and K or both crack depth and K from this consideration.$\varepsilon(K)$ is expressed as ${\varepsilon}(K)=h_2{\cdot}K^2+h_3{\cdot}K^3$ when $h_{2}$ and $h_{3}$ are coefficients. Also, relationships between SCC crack growth rate, da/dt and K were simulated and compared with the literature data of JBWR-VIP-04, NRC NUREG-0313 Rev.2 and SKIFS Draft. It was pointed out in CT test that the difference of distance between a point of application of force and the end of starter notch (starting point of fatigue crack) may be important to estimate SCC crack growth rate. An anode dissolution current density was quantitatively evaluated using a derived equation.

The Electrical Properties of $(SrPb)(CaMg)TiO_3$ Ceramics with Contents of $Bi_2O_3{\cdot}3TiO_2$ ($Bi_2O_3{\cdot}3TiO_2$의 첨가량에 따른 $(SrPb)(CaMg)TiO_3$ 세라믹의 전기적 특성)

  • Kim, Chung-Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 1998
  • In this paper, the $(SrPb)(CaMg)TiO_3$ ceramics with paraelectric properties were fabricated by the mixed oxide method. It was investigated that which the variation of contents of $Bi_2O_3{\cdot}3TiO_2$ effects on structural, dielectrical and electrical properties of specimens. As a result, the grain size were grown with increasing the contents of $Bi_2O_3{\cdot}3TiO_2$. The relative dielectric constants were increased up to 4[mol%] of $Bi_2O_3{\cdot}3TiO_2$, and decreased more or less at a low temperature in the specimens which had more than. But the temperature coefficient. of capacitance were showed ${\pm}25$[%]. The dielectric loss were less than 0.05 in all specimens which had more than 4[mol%] of $Bi_2O_3{\cdot}3TiO_2$. In order to investigate the behavior of charged particles, the characteristics of electrical conduction were measured. As a result, the conduction current was divided into the three steps as a function of DC electric field. The first step was Ohmic region due to ionic conduction, below 15[kV/cm]. The second step was showed a saturation which seems to be related to a depolarizing field occuring in field-enforced ferroelectric phase, between 15[kV/cm] and 40[kV/cm]. The third step was attributed to Child's law related to space charge which injected from electrode, above 40[kV/cm].

  • PDF