• 제목/요약/키워드: Thioredoxin

검색결과 159건 처리시간 0.028초

Heat Shock Causes Oxidative Stress and Induces a Variety of Cell Rescue Proteins in Saccharomyces cerevisiae KNU5377

  • Kim, Il-Sup;Moon, Hye-Youn;Yun, Hae-Sun;Jin, Ing-Nyol
    • Journal of Microbiology
    • /
    • 제44권5호
    • /
    • pp.492-501
    • /
    • 2006
  • In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of $40^{\circ}C$. The KNU5377 strain evidenced a very similar growth rate at $40^{\circ}C$ as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at $43^{\circ}C$. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and $H^+$-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures ($43^{\circ}C$), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.

기능성 미량원소 Selenium 화합물에 대한 고찰 (Review on the Selenuium, an Essential Trace Mineral)

  • 이춘기;남중현;김재철;구본철;강문석;박광근
    • 한국작물학회지
    • /
    • 제48권
    • /
    • pp.13-23
    • /
    • 2003
  • The trace mineral, selenium (Se), is an essential nutrient of fundamental importance to human health. It is also very toxic and can cause Se poisoning (selenosis) in human and animals when its intake exceeds a suitable amount. Se functions within mammalian systems primarily in the form of solenoprotein. About 35 selenoproteins have been identified, though many have not yet been fully elucidated. Selenoproteins contain Se as selenocyseine (Sec) and perform variety of structural and enzymic roles; the enzymic roles are best-known as the antioxidants for hydrogen peroxides and lipid peroxides, and the catalysts for production of activity thyroid hormone. Glutathione peroxidases ($\textrm{GP}_X$) among the selenoproteins prevent the generation of free radicals and decrease the risk of oxidative damage to tissues, as does thioredoxin reductase (TR). TR also provides reducing power for several biochemical processes. Selenoproteins P and W are involved with oxidant defense in plasma and muscle, respectively, A selenoprotein is also required for sperm motility and may reduce the risk of miscarriage. Some epidemiological studies have revealed an inverse correlation between Se status and cardiovascular disease, and there is considerable evidence 1mm population com-parison data and animal studies that Se is anticarcinogenic. It is also suggested that Se should be needed for the proper functioning of the immune system, and appear to be a key nutrient in counteracting the development of virulence and inhibiting HIV progression to AIDS. As research continues, the role of selenium in the etiology of chronic diseases like appropriate medical nutrition therapy can be delivered and its effectiveness assessed. Se status in individuals is affected by diet and the availability of the Se. The Se content of plants is affected by the content and availability of the element in the soil in which they are grown, and so greatly varies from country to country, while the Se composition of meat reflects the feeding patterns of livestock. This paper provides an overview on Se as an essential trace mineral for human.

Expression of the EPO-like Domains of Human Thrombopoietin in Escherichia coli

  • Koh, Yeo-Wook;Koo, Tai-Young;Ju, Sang-Myoung;Kwon, Chang-Hyuk;Chung, Joo-Young;Park, Myung-Hwan;Yang, Jai-Myung;Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.553-559
    • /
    • 1998
  • cDNA of human thrombopoietin (hTPO) amplified by polymerase chain reaction from a cDNA library of human fetal liver was cloned. EPO-like domains ($hTPO_{153} \;or\; hTPO_{l63})\; of\; hTPO(hTPO_{332}$) were expressed in Escherichin coli using several kinds of expression systems, such as ompA secretion, thioredoxin fusion, and the $P_L$ and T7 expression systems. To obtain $hTPO_{153}$ in soluble form, $hTPO_{153}$ cDNA was fused in-frame behind the gene encoding ompA signal sequence and thioredoxin protein. When fused with either of the genes, $hTPO_{153}$ was not expressed to the detectable level. However, a high level expression of the EPO-like domain of hTPO was obtained using the PL and T7 expression system. $hTPO_{153} \;or\; hTPO_{l63} cDNA were subcloned into the pLex and pET-28a(+) vectors under the control of the inducible$ P_L\;T_7$ promoter, respectively. Proteins expressed using pl.ex vector and pET-28a(+) detected in insoluble forms with an expression level of about 14% and 9% of total cellular proteins, respectively, and the level of expression was rapidly diminished in 2 h after the maximum level of expression was reached.

  • PDF

Light-regulated Translation of Chloroplast Reaction Center Protein D1 mRNA in Chlamydomonas reinhardtii

  • Kim, Jungmook
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.57-62
    • /
    • 1999
  • Light-regulated translation of chloroplast mRNAs requires nuclear-encoded trans-acting factors that interact with the 5' untranslated region (UTR) of these mRNAs. A set of four proteins (60, 55, 47, and 38 kDa) that bind to the 5'-UTR of the psbA mRNA had been identified in C. reinhardtii. 47 kDa protein (RB47) was found to encode a chloroplast poly (A)-binding protein (cPABP) that specifically binds to the 5'-UTR of the psbA mRNA, and essential for translation of this mRNA, cDNA encoding 60 kDa protein (RB60) was isolated, and the amino acid sequence of the encoded protein was highly homologous to plants and mammalian protein disulfide isomerases (PDI), normally found in the endoplasmic reticulum (ER). Immunoblot analysis of C. reinhardtii proteins showed that anti-PDI recognized a distinct protein of 56 kDa in whole cell extract, whereas anti-rRB60 detected a 60 kDa protein. The ER-PDI was not retained on heparin-agarose resin whereas RB60 was retained. In vitro translation products of the RB60 cDNA can be transported into C. reinhardtii chloroplast in vitro. Immunoblot analysis of isolated pea chloroplasts indicated that higher plant also possess a RB60 homolog. In vitro RNA-binding studies showed that RB60 modulates the binding of cPABP to the 5'-UTR of the psbA mRNA by reversibly changing the redox status of cPABP using redox potential or ADP-dependent phosphorylation. Site-directed mutagenesis of -CGHC- catalytic site in thioredoxin-like domain of RB60 is an unique PDI located in the chloroplast of C. reinhardtii, and suggest that the chloroplast PDI may have evolved to utilize the redox-regulated thioredoxin like domain as a mechanism for regulating the light-activated translation of the psbA mRNA.

  • PDF

북한산국립공원의 식생개관

  • 임양재
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1985년도 워크샵 및 심포지엄 북한산국립공원의 식생
    • /
    • pp.7-18
    • /
    • 1985
  • Light-regulated translation of chloroplast mRNAs requires nuclear-encoded trans-acting factors that interact with the 5' untranslated region (UTR) of these mRNAs. A set of four proteins (60, 55, 47, and 38 kDa) that bind to the 5'-UTR of the psbA mRNA had been identified in C. reinhardtii. 47 kDa protein (RB47) was found to encode a chloroplast poly (A)-binding protein (cPABP) that specifically binds to the 5'-UTR of the psbA mRNA, and essential for translation of this mRNA, cDNA encoding 60 kDa protein (RB60) was isolated, and the amino acid sequence of the encoded protein was highly homologous to plants and mammalian protein disulfide isomerases (PDI), normally found in the endoplasmic reticulum (ER). Immunoblot analysis of C. reinhardtii proteins showed that anti-PDI recognized a distinct protein of 56 kDa in whole cell extract, whereas anti-rRB60 detected a 60 kDa protein. The ER-PDI was not retained on heparin-agarose resin whereas RB60 was retained. In vitro translation products of the RB60 cDNA can be transported into C. reinhardtii chloroplast in vitro. Immunoblot analysis of isolated pea chloroplasts indicated that higher plant also possess a RB60 homolog. In vitro RNA-binding studies showed that RB60 modulates the binding of cPABP to the 5'-UTR of the psbA mRNA by reversibly changing the redox status of cPABP using redox potential or ADP-dependent phosphorylation. Site-directed mutagenesis of -CGHC- catalytic site in thioredoxin-like domain of RB60 is an unique PDI located in the chloroplast of C. reinhardtii, and suggest that the chloroplast PDI may have evolved to utilize the redox-regulated thioredoxin like domain as a mechanism for regulating the light-activated translation of the psbA mRNA.

  • PDF

Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis

  • Hongming Lv;Yvxi He;Jingjing Wu; Li Zhen ;Yvwei Zheng
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.2.1-2.14
    • /
    • 2023
  • Background: Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. Objectives: This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. Methods: In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4℃) for three hours per day for three weeks. Results: CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stressinvolved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. Conclusions: These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.

패혈증 동물 모델에서 Peroxiredoxin 및 Thioredoxin의 발현 변화 (Altered Expression of Peroxiredoxin and Thioredoxin in Septic Animal Model)

  • 김형중;채호준;안철민;김성규;이원영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제47권4호
    • /
    • pp.451-459
    • /
    • 1999
  • 배 경 : 패혈증에서 과도한 활성산소종의 생성은 급성 폐손상의 병리 기전에 중요한 역할을 한다. Catalase 및 MnSOD 등의 항산화 단백은 패혈증 환자의 혈청내 증가하며 급성호흡곤란증후군의 발생 예측 인자 및 패혈증의 예후 인자로 알려져 있다. Peroxiredoxin(Prx) 는 최근 독특하고 중요한 세포내 항산화 단백으로 알려져 있다. 본 연구는 대식세포인 mouse monocyte-macrophages(RAW 264.7) 세포에 산화 스트레스 및 내독소 처리후 Prx I 및 Prx II의 발현 평가하고 패혈증 동물 모델에서 복강세척액 및 기관지폐포세척액내 Prx I, Prx II 및 Trx의 양을 측정하였다. 방 법 : Prx I, Prx II 및 Trx에 대한 특이 항체를 이용하여 immunoblot 분석으로 호중구, 대식세포 및 적혈구에 이들의 분포를 평가하였다. Mouse monocyte-macrophages 세포에 $5\;{\mu}M$ menadione 및 1 mg/ml lipopolysaccharide(LPS) 을 처치하여 Prx I 및 Prx II의 발현을 평가하였으며 6 mg/Kg LPS를 복강내 투여하여 유발한 복강내 패혈증 동물의 복강세척액내 Prx I, Prx II 및 Trx의 양을 측정하였으며 복강내 패혈증 동물 및 5 mg/Kg LPS를 정맥내 투여하여 유발한 정맥내 패혈증 동물에서 기관지폐포세척액내 Prx I, Prx II 및 Trx을 측정하였으며 폐장의 염증 정도와 비교하였다. 결 과 : Prx I 및 Prx II의 분포는 호중구, 폐포대식세포 및 적혈구에서 서로 다른 양상을 보였다. Mouse monocyte-macrophages 세포에 $5\;{\mu}M$ menadione 및 $1\;{\mu}g/ml$ lipopolysaccharide을 처치하였을 때 Prx I 발현은 증가하였으나 Prx II 발현은 변화하지 않았다. 복강내 패혈증 동물에서 복강세척액내 Prx I, Prx II 및 Trx의 양은 증가하였으나 복강내 패혈증 및 정맥내 패혈증 동물에서 기관지폐포세척액내 폐장 염증 정도와 관계없이 Prx I, Prx II 및 Trx의 양은 증가하지 않았다. 결 론 : 세포내 항산화 단백으로서 mouse monocyte-macrophages 세포에서 Prx I의 발현은 산화 스트레스 및 내독소 처치후 증가한다. Prx I, Prx II 및 Trx양은 패혈증 동물 모델에서 국소 염증 부위에서 증가하나 손상된 폐장에서는 증가하지 않는다.

  • PDF

DNA Polymerase의 구조 및 기능 연구 (Structural and Functional Aspects of DNA Polymerase)

  • Kim, Young Tae
    • 생명과학회지
    • /
    • 제3권4호
    • /
    • pp.194-208
    • /
    • 1993
  • DNA 복제시 중추적 단백질은 DNA 합성을 수행하는 DNA polymerase이다. 따라서 DNA polymerase의 구조 및 기능에 대한 연구는 DNA polymerase의 중합반응에 대한 기작을 비롯하여 교정 및 수선기능에 대한 정보를 얻게 함으로써 복잡한 DNA 복제 기적을 이해하는 첩경이 된다. Bacteriophage T7의 Gene 5 단백질은 T7 DNA polymerase로 Richardson group에 의해 처음으로 발견되었으며, E. coli의 12 KDa thioredoxin과 tight complex를 형성한다. T7 DNA polymerase의 클로닝은 분자생물학의 새로운 장을 열어준 중요한 의미를 지닌다 . 본 연구에서는 T7 DNA polymerase의 구조적, 기능적 특성을 파악하고 DNA 염기서열 분석에의 응용 및 DNA 염기서열 결정을 위한 새로운 전략 및 최근연구 동향에 대해 기술하였다.

  • PDF

Purification and Characterization of Thiol-Specific Antioxidant Protein from Human Liver: A Mer5-Like Human Isoenzyme

  • Cha, Mee-Kyung;Kim, Il-Han
    • BMB Reports
    • /
    • 제29권3호
    • /
    • pp.236-240
    • /
    • 1996
  • A 23-kDa molecular mass of antioxidant protein was purified from human liver. This protein exhibited the preventive effect against the inactivation of glutamine synthetase by a metal-catalyzed oxidation system. This antioxidant activity was supported by a thiol-reducing equivalent such as dithiothreitol in a similar manner to that of the 25-kDa thiol-specific antioxidant protein (TSA) from human red blood cells (HR). However, a thioredoxin-linked peroxidase activity of thiol-specific antioxidant protein of human liver (HLTSA) (0.91 ${\mu}mol/min/nmol$ of HLTSA) was much lower than that of thiol-specific antioxidant protein of human red blood cells (HRTSA) (16.4 ${\mu}mol/min/nmol$ of HRTSA). This HLTSA is also immnologically distinct from HRTSA Amino acid sequences of the three tryptic peptides (P1, P2, P3) of HLTSA were found to be completely homologous to segments of the known Mer5-like protein, which belongs to the known TSA family.

  • PDF