• Title/Summary/Keyword: Thiols

Search Result 105, Processing Time 0.025 seconds

Reaction of Lithium Tris(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Jae Cheol Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.469-475
    • /
    • 1993
  • The approximate rates and stoichiometry of the reaction of excess lithium tris(diethylamino)aluminum hydride (LTDEA) with selected organic compounds containing representative functional groups under standardized condition (tetrahydrofuran, 0$^{\circ}C$) were examined in order to define the characteristics of the reagent for selective reductions. The reducing ability of LTDEA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(dibutylamino)aluminum hydride (LTDBA). In general, the reactivity toward organic functionalities is in order of LAH${\gg}$LTDEA${\geq}$LTDBA. LTDEA shows a unique reducing characteristics. Thus, benzyl alcohol and phenol evolve hydrogen slowly. The rate of hydrogen evolution of primary, secondary, and tertiary alcohols is distinctive: 1-hexanol evolves hydrogen completely in 6 h, whereas 3-hexanol evolves hydrogen very slowly. However, 3-ethyl-3-pentanol does not evolve any hydrogen under these reaction conditions. Primary amine, such as n-hexylamine, evolves only 1 equivalent of hydrogen. On the other hand, thiols examined are absolutely inert to this reagent. LTDEA reduces aldehydes, ketones, esters, acid chlorides, and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. However, carboxylic acids, anhydrides, nitriles, and primary amides are reduced slowly, where as tertiary amides are readily reduced. Finally, sulfides and sulfoxides are reduced to thiols and sulfides, respectively, without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent to convert esters, primary carboxamides, and aromatic nitriles into the corresponding aldehydes. Free carboxylic acids are also converted into aldehydes through treatment of acyloxy-9-BBN with this reagent in excellent yields.

Reaction of Potassium 2-Thexyl-1,3,2-dioxaborinane Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Sung Eun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.531-537
    • /
    • 1992
  • The approximate rates and stoichiometry of the reaction of excess potassium 2-thexyl-1,3,2-dioxaborinane hydride(KTDBNH) with 55 selected compounds containing representative functional groups under standardized conditions (tetrahydrofuran, TEX>$0^{\circ}C$, reagent : compound=4 : 1) was examined in order to define the characteristics of the reagent for selective reductions. Benzyl alcohol and phenol evolve hydrogen immediately. However, primary, secondary and tertiary alcohols evolve hydrogen slowly, and the rate of hydrogen evolution is in order of $1^{\circ}$> $2^{\circ}$> $3^{\circ}$. n-Hexylamine is inert toward the reagent, whereas the thiols examined evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to give the corresponding alcohols. Cinnamaldehyde is rapidly reduced to cinnamyl alcohol, and further reduction is slow under these conditions. The reaction with p-benzoquinone dose not show a clean reduction, but anthraquinone is cleanly reduced to 9,10-dihydro-9,10-anthracenediol. Carboxylic acids liberate hydrogen immediately, further reduction is very slow. Cyclic anhydrides slowly consume 2 equiv of hydride, corresponding to reduction to the caboxylic acid and alcohol stages. Acid chlorides, esters, and lactones are rapidly and quantitatively reduced to the corresponding carbinols. Epoxides consume 1 equiv hydride slowly. Primary amides evolve 1 equiv of hydrogen readily, but further reduction is slow. Tertiary amides are also reduced slowly. Both aliphatic and aromatic nitriles consume 1 equiv of hydride rapidly, but further hydride uptake is slow. Analysis of the reaction mixture with 2,4-dinitrophenylhydrazine yields 64% of caproaldehyde and 87% of benzaldehyde, respectively. 1-Nitropropane utilizes 2 equiv of hydride, one for hydrogen evolution and the other for reduction. Other nitrogen compounds examined are also reduced slowly. Cyclohexanone oxime undergoes slow reduction to N-cyclohexylhydroxyamine. Pyridine ring is slowly attacked. Disulfides examined are reduced readily to the correponding thiols with rapid evolution of 1 equiv hydrogen. Dimethyl sulfoxide is reduced slowly to dimethyl sulfide, whereas the reduction of diphenyl sulfone is very slow. Sulfonic acids only liberate hydrogen quantitatively without any reduction. Finally, cyclohexyl tosylate is inert to this reagent. Consequently, potassium 2-thexyl-1,3,2-dioxaborinane hydride, a monoalkyldialkoxyborohydride, shows a unique reducing characteristics. The reducing power of this reagent exists somewhere between trialkylborohydrides and trialkoxyborohydride. Therefore, the reagent should find a useful application in organic synthesis, especially in the field of selective reduction.

Synthesis and Spectral Properties of Novel Thionaphtoquinone Dyes

  • Sayil, Cigdem;Ibis, Cemil
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1233-1236
    • /
    • 2010
  • 2,3-Dichloro-1,4-naphtoquinone 1 compound was reacted with octadecanethiol 2 in two different mole ratio. Compound 3 was obtained from the reaction of 1 and 2 in 1:2 mole/mole ratio. Compounds 7 and 8 were obtained from reaction of 1 and 2 in 1:1 mole/mole ratio and known compound 9 was synthesized as by-product in this reaction. Novel compounds 5a-e were obtained from reaction of 1 and related thiols 4a-e. Known compounds 6c and 6e were synthesized as by-product in this reaction. The structures of the compounds were characterized by elemental analysis, UV-vis, FTIR, $^1H$-NMR, $^{13}C$-NMR and Mass spectroscopies.

Metallothioneins and Oxidative Stress

  • Beattie, John H.;Trayhurn, Paul
    • Nutritional Sciences
    • /
    • v.5 no.4
    • /
    • pp.228-233
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein(MT) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over- or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress. Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

Role of phospholipid metabolism in Methylmercury-induced Cytotoxicity

  • Kang, Mi-Sun;Jeong, Ju-Yeon;Jung, Sung-Yun;Kim, Dae-Kyong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.294.2-295
    • /
    • 2002
  • Methylmercury (MeHg: CH3HgCl) is a ubiquitous environmental toxicant that readily bioaccumulates in aquatic foodchains. This toxicant is most highly exposed to humans through the ingestion of contaminated food. and thus is an ongoing health concern. Thus far. MeHg has been suggested to exert its toxicity through its high reactivity to thiols of bioactive proteins. elevation in intracellular Ca2+ concentration. and generation of reactive oxygen species. but its mechanism remains poorly understood. (omitted)

  • PDF

The Synthesis and Characterization of Some Novel Thioethers: Thio-Subsituted [3]Cumulenes, -1-Buten-3-ynes and Buta-1,3-dienes

  • Ibis, Cemil;Sahin, Aysecik
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2255-2260
    • /
    • 2010
  • In this study, some novel thiosubstituted butenyne (3a-d, 7b, 15b), butadiene (4a-b, 4d, 5a, 5c, 6b, 8e, 9c, 10b, 16b, 18e) and [3]cumulene (11a-b with isomer 3a-b, 12a with isomer 13a, 14b, 17e) compounds were synthesized from the reaction of 2H-pentachloro-1,3-butadiene with thiols. The new compounds were characterized by elemental analysis, mass spectrometry, UV-vis, IR, 1H NMR, NMR ($^{13}C$ or APT) spectroscopy.

Metallothioneins and Oxidative Stress

  • Beattie, John H.;Trayhurn, Paul
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 2002.11b
    • /
    • pp.1171-1177
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein (MT) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over-or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

  • PDF

Metallothioneins and oxidative stress

  • Beattie, John H.;Trayhurn, Paul
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 2002.11a
    • /
    • pp.73-82
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein (U) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over- or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress. Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

  • PDF

Taurine protects the antioxidant defense system in the erythrocytes of cadmium treated mice

  • Sinha, Mahua;Manna, Prasenjit;Sil, Parames C.
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.657-663
    • /
    • 2008
  • The present study was undertaken to investigate the protective role of taurine (2-aminoethanesulfonic acid) against cadmium (Cd) induced oxidative stress in murine erythrocytes. Cadmium chloride ($CdCl_2$) was chosen as the source of Cd. Experimental animals were treated with either $CdCl_2$ alone or taurine, followed by Cd exposure. Cd intoxication reduced hemoglobin content and the intracellular Ferric Reducing/Antioxidant Power of erythrocytes, along with the activities of antioxidant enzymes, glutathione content, and total thiols. Conversely, intracellular Cd content, lipid peroxidation, protein carbonylation, and glutathione disulphides were significantly enhanced in these cells. Treatment with taurine before Cd intoxication prevented the toxin-induced oxidative impairments in the erythrocytes of the experimental animals. Overall, the results suggest that Cd could cause oxidative damage in murine erythrocytes and that taurine may play a protective role in reducing the toxic effects of this particular metal.

Control the Au(111) Work Function by Substituted Aromatic Thiol Self-Assembled Monolayers

  • Gang, Hun-Gu;Ito, Eisuke;Okabayashi, Youichi;Hara, Masahiko;No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.243-243
    • /
    • 2012
  • Self-assembled monolayers (SAMs) prepared by aromatic thiols on gold surfaces have much larger potential for electronic device applications due to their electronic properties. In this study, the formation and structures of SAMs prepared by benzenethiol (BT), toluenethiol (TT), 2-fluorobenzenethiol (2-FBT), 3-fluorobenzenethiol (3-FBT), 4-fluorobenzenethiol (4-FBT), 4-chlorobenzenethiol (4-CBT), 4-fluorobenzenemethanethiol (4-FBMT), and 4-chlorobenzenemethanethiol (4-CBMT) on Au(111) were examined using scanning tunneling microscopy (STM) and Kelvin probe (KP) to explore the structure and electronic interface properties of eight differently substituted aromatic thiol SAMs on Au(111). And these values are compared with gas phase dipole moments computed by quantum chemical calculations for individual thiol molecules. It was revealed that all eight thiol-molecules form uniform SAMs on Au(111) at $75^{\circ}C$ compared to lower solution temperature by STM observation. The work function change obtained in the KP measurements and calculated molecular dipole moments have the linear relationship while the 4-FBMT and 4-CBMT deviate from this tendency.

  • PDF