DOI QR코드

DOI QR Code

Reaction of Lithium Tris(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Published : 1993.08.20

Abstract

The approximate rates and stoichiometry of the reaction of excess lithium tris(diethylamino)aluminum hydride (LTDEA) with selected organic compounds containing representative functional groups under standardized condition (tetrahydrofuran, 0$^{\circ}C$) were examined in order to define the characteristics of the reagent for selective reductions. The reducing ability of LTDEA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(dibutylamino)aluminum hydride (LTDBA). In general, the reactivity toward organic functionalities is in order of LAH${\gg}$LTDEA${\geq}$LTDBA. LTDEA shows a unique reducing characteristics. Thus, benzyl alcohol and phenol evolve hydrogen slowly. The rate of hydrogen evolution of primary, secondary, and tertiary alcohols is distinctive: 1-hexanol evolves hydrogen completely in 6 h, whereas 3-hexanol evolves hydrogen very slowly. However, 3-ethyl-3-pentanol does not evolve any hydrogen under these reaction conditions. Primary amine, such as n-hexylamine, evolves only 1 equivalent of hydrogen. On the other hand, thiols examined are absolutely inert to this reagent. LTDEA reduces aldehydes, ketones, esters, acid chlorides, and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. However, carboxylic acids, anhydrides, nitriles, and primary amides are reduced slowly, where as tertiary amides are readily reduced. Finally, sulfides and sulfoxides are reduced to thiols and sulfides, respectively, without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent to convert esters, primary carboxamides, and aromatic nitriles into the corresponding aldehydes. Free carboxylic acids are also converted into aldehydes through treatment of acyloxy-9-BBN with this reagent in excellent yields.

Keywords

References

  1. Tetrahedron Lett. v.32 J. S. Cha;J. C. Lee;S. E. Lee;J. M. Kim;O. O. Kwon;H. S. Lee;S. J. Min
  2. Bull. Korean Chem. Soc. v.12 J. S. Cha;S. E. Lee;H. S. Lee
  3. Bull. Korean Chem. Soc. v.13 J. S. Cha;S. E. Lee;H. S. Lee;J. M. Kim;O. O. Kwon;S. J. Min
  4. Org. Prep. Proced. Int. v.24 J. S. Cha;J. C. Lee;S. E. Lee;H. S. Lee
  5. Bull. Korean Chem. Soc. v.12 J. S. Cha;J. C. Lee;S. E. Lee;H. S. Lee
  6. Org. Prep. Proced, Int. v.24 J. S. Cha;S. E. Lee;H. S. Lee
  7. Org. Prep. Proced. Int. v.24 J. S. Cha;S. J. Min;J. C. Lee;H. S. Lee;S. E. Lee
  8. Bull. Korean Chem. Soc. v.13 J. S. Cha;S. E. Lee
  9. Bull. Korean Chem. Soc. v.13 J. S. Cha
  10. Bull. Koeran Chem. Soc. v.13 J. S. Cha;J. M. Kim;M. K. Jeoung;K. D. Lee
  11. J. Am. Chem. Soc. v.88 H. C. Brown;P. M. Weissman;N. M. Yoon
  12. J. Am. Chem. Soc. v.88 H. C. Brown;P. M. Weissman;N. M. Yoon
  13. J. Korean Chem. Soc. v.21 N. M. Yoon;J. S. Cha
  14. Bull. Korean Chem. Soc. v.4 C. Pyun;J. C. Son;N. M. Yoon
  15. J. Org. Chem. v.49 H. C. Brown;C. P. Mathew;C. Pyun;J. C. Son;N. M. Yoon
  16. J. Org. Chem. v.45 H. C. Brown;S. C. Kim;S. Krishnamurthy
  17. Israel J. Chem. v.1 H. C. Brown;P. M. Weissman
  18. J. Org. Chem. v.49 H. C. Brown;J. S. Cha;B. Nazer;S. C. Kim;S. Krishnamurthy;C. A. Brown
  19. Synthesis H. C. Brown;J. S. Cha;B. Nazer;S. C. Kim;S. Krishnamurthy;C. A. Brown
  20. J. Korean Chem. Soc. v.17 N. M. Yoon;H. J. Lee;J. S. Chung
  21. J. Am. Chem. Soc. v.92 H. C. Brown;P. Heim;N. M. Yoon
  22. J. Org. Chem. v.37 H. C. Brown;P. Heim;N. M. Yoon
  23. J. Am. Chem. Soc. v.92 H. C. Brown;D. B. Bigley;S. K. Arora;N. M. Yoon
  24. J. Org. Chem. v.51 H. C. Brown;B. Nazer;J. S. Cha;J. Sikorski
  25. J. Am. Chem. Soc. v.88 H. C. Brown;N. M. Yoon
  26. J. Org. Chem. v.50 N. M. Yoon;Y. S. Gyoung
  27. J. Org. Chem. v.52 N. M. Yoon;K. E. Kim
  28. Bull. Korean Chem. Soc. v.13 N. M. Yoon;Y. S. Shon;J. H. Ahn
  29. Bull. Korean Chem. Soc. v.8 J. S. Cha;J. E. Kim;Y. S. Oh
  30. Bull. Korean Chem. Soc. v.10 J. S. Cha;M. S. Yoon;K. W. Lee;J. C. Lee
  31. Bull. Korean Chem. Soc. v.13 J. S. Cha;S. E. Lee
  32. Organic Synthesis via Boranes H. C. Brown;G. W. Kramer;M. M. Midland

Cited by

  1. CONVERSION OF AROMATIC NITRILES TO ALDEHYDES BY SODIUM tris (DIALKY-LAMINO) ALUMINUM HYDRIDES vol.26, pp.5, 1994, https://doi.org/10.1080/00304949409458063
  2. TRANSFORMATION OF CARBOXYLIC ESTERS TO ALDEHYDES WITH SODIUM tris(DIETHYLAMINO)ALUMINUM HYDRIDE vol.27, pp.1, 1993, https://doi.org/10.1080/00304949509458184
  3. Reaction of lithium tris(tert-butylthiolato)hydridoaluminate with selected organic compounds containing representative functional groups vol.65, pp.1, 2009, https://doi.org/10.1007/s10847-009-9628-4
  4. Thirty Six Years of Research on the Selective Reduction and Hydroboration vol.32, pp.6, 1993, https://doi.org/10.5012/bkcs.2011.32.6.1808