• Title/Summary/Keyword: Thiols

Search Result 105, Processing Time 0.022 seconds

Physiological Responses of Rice Seedlings to Butachlor (Butachlor에 대한 벼 유묘의 생리적 반응)

  • Tsai, Wen-Fu
    • Korean Journal of Weed Science
    • /
    • v.15 no.4
    • /
    • pp.247-253
    • /
    • 1995
  • The herbicide butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-di-methylphenyl) acetamide] is widely used by farmers as a tool for weed management of transplanted rice(Oryza sativa L.) in Taiwan. The herbicide did not stop germination of rice and weed seeds, but strongly inhibited the subsequent growth of young shoots and roots. The inhibition was also strong on established seedlings. However, they could recover to normal growth after the herbicide effect disappeared. Butachlor greatly decreased the endogenous indole-3-acetic acid (IAA) but increased the endogenous abscisic acid (ABA) contents of rice seedlings. Addition of lAA into growth medium (Hoagland's solution) partly relieved growth inhibition. Pretreatment of both gibberellic acid ($GA_3$) and IAA 24 hours before butachlor treatment almost completely alleviated the butachlor-interfere with GA and/or IAA metabolism or their action resulting in the growth inhibition of rice. Butachlor was readily absorbed by rice roots. During 24 hours of uptake experiment, 32% of the applied herbicide was absorbed. Pretreatment of the herbicide for 2 days did ncx affect the absorption. Of the absorbed herbicide, 80% remained in roots, only 20% transported into shoots, and more than 50% was metabolized to water soluble substances. Thin-layer chromatographic (TLC) analysis indicated that the Rf value of the most abundant metabolite was butachlor-glutathione conjugate. Rice, barnyardgrass (Echinochloa crus-galli (L.) Beauv.), and monochoria (Monochoria vaginalis Presl) seedlings contained relatively high level of non-protein thiols, while the glutathione S-transferase (GST) activity was found highest in rice, barnyardgrass the next, monochoria the lowest. The difference in GST activity among these species might be related to their sensitivity to butachlor.

  • PDF

Carbamate-Based Surface Reactions for Release of Amine Molecules from Electroactive Self-Assembled Monolayers

  • Hong, Dae-Wha;Kang, Kyung-Tae;Hong, Seok-Pyo;Shon, Hyun-Kyong;Lee, Tae-Geol;Choi, In-Sung S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.208-209
    • /
    • 2011
  • In this work, we developed self-assembled monolayers (SAMs) of alkanethiols on gold that can release amine groups, when an electrical potential was applied to the gold. The strategy was based on the introduction of the electroactive carbamate group, which underwent the two-electron oxidation with simultaneous release of the amine molecules, to alkanethiols. The synthesis of the designed thiol compounds was achieved by coupling isocyanate-containing compound with hydroquinone. The electroactive thiols were mixed with hydroxyl-containing alkanethiol [$HS(CH_2)_{11}OH$] to form mixed monolayers, and cyclic votammetry was used for the characterization of the release. The mixed SAMs showed a first oxidation peak at +540 mV (versus Ag/AgCl reference electrode), demonstrating irreversible conversion from carbamate to hydroqinone with simultaneous release of the amine groups. The second and third cycles showed typical reversible redox reaction of hydroquinone and quione: the oxidation and reduction occurred at +290 mV and -110 mV, respectively. The measurement of ToF-SIMS further indicates that electrochemical-assisted chemical reaction successfully released amine groups. This new SAM-based electrochemistry would be applicable for direct release of biologically active molecules that contain amine groups.

  • PDF

Surface Modification of Glass Chip for Peptide Microarray (펩타이드 Microarray를 위한 유리 칩의 표면 개질)

  • Cho, Hyung-Min;Lim, Chang-Hwan;Neff, Silke;Jungbauer, Alois;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.260-264
    • /
    • 2007
  • Peptides are frequently studied as candidates for new drug development. Recently, synthesized peptide library is screened for a certain functionality on a microarray biochip format. In this study, in order to replace the conventional cellulose membrane with glass for a microarray chip substrate for peptide library screening, we modified the glass surface from amines to thiols and covalently immobilized the peptides. Using trypsin-FITC (fluorescein isothiocyanate) conjugate that could specifically bind to a trypsin binding domain consisting of a 7-amino acid peptide, we checked the degree of surface modification. Because of the relatively lower hydrophilicity and reduced surface roughness, the conjugation reaction to the glass required a longer reaction time and a higher temperature. It took approximately 12 hr for the reaction to be completed. From the fluorescence signal intensity, we could differentiate between the target and the control peptides. This difference was confirmed by a separate experiment using QCM. Furthermore, a smaller volume and higher concentration of a spot showed a higher fluorescence intensity. These data would provide the basic conditions for the development of microarray peptide biochips.

Synthesis of Cephalosporin Derivatives with Triazolylthiomethylpyrrolidines at the C-3 Side Chain (트리아조릴 티오메칠피로리딘을 3번 측쇄에 가진 세파로스포린 유도체의 합성)

  • 고옥현;홍준희
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.313-319
    • /
    • 2002
  • Synthesis of 7$\beta$-[(Z)-2-(2-aminothiazol-4-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-[[(3S, 5S)-5-[4-phenyl-5-(4-methylphenyl or 2-thiophenyl)-4H-l, 2, 4- triazol-3-yl]thiomethylpyrrolidin-3-yl]]thiomethyl-3-cephem-4-carboxylic acids (7a, 7b) were described. (2S, 4S)-4-acethylthio-2-[4-phenyl-5-(4-methylphenyl or 2-thiophenyl)-4 H-1, 2, 4-triazol-3-yl]thiomethyl-1-tert-butoxycarbonylpyrrolidines (4a, 4b) were prepared from trans-4-hydroxy-L-proline with (2S, 4R)-absolute configuration as starting material. 4-Phenyl-5-(4-methylphenyl or 2-thiophenyl)-4 H-l, 2, 4-triazol-3-thiols (2a, 2b) were prepared from p-toluic anhydride and 2-thiophene carboxylic acid hydrazide, respectively. p-Methoxybenzyl 7$\beta$-(Z)-2-(2-for-mamidothiazol-4-yl)-2-(1-tert-butoxycarbonylisopropylimino]acetamido-3-[[ (3S, 5S)-5-[4-phenyl-5-(4-methylphenyl or 2-thio phenyl)-4H-1, 2, 3-triazol-3-yl]thiomethyl-1- tert-butoxycarbonylpyrrolidin-3-yl]]thiomethyl-3-cephem-4-carboxylates (6a, 6b) were achieved by using p-methoxybenzyl ]7P-(Z)-2-(2-formamidothiazol-4-yl)-2-(tert-butoxycarbonylisopropylimino] acetamido-3-chloromethyl-3-cephem-4-carboxylate (5) and (2S, 4S)-4-acethylthio-2-[4-phenyl-5-(4-methyl phenyl or 2-thiophenyl)-4H-1, 2, 4-triazol-3-yl]thiomethyl-1-tert-butoxycarbonyl pyrrolidines (4a, 4b). Removal of formyl, Boc, and p-methoxybenzyl protecting groups were carried out by triflu oroacetic acid and anisole to give the target compounds.

Synthesis of Nucleophilic Adducts of Thiols (VIII). Addition of L-Glutathione to ${\beta},\;{\beta}$-Diethoxycarbonylstyrene Derivatives (Thiol의 친핵성 첨가물의 합성 (VIII). ${\beta},\;{\beta}$-Diethoxycarbonylstyrene에 대한 L-Glutathione의 첨가)

  • Tae-Rin Kim;Sung-Yong Choi;Joon-Seob Shin
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.651-655
    • /
    • 1985
  • A series of S-(2,2-diethoxycarbonyl-1-phenylethyl)-L-glutathione derivatives (11a-e) were synthesized from the reaction of ${\beta},\;{\beta}$-diethoxycarbonylstyrene with L-glutathione in 9 : 1 aqueous methanol. Thus, S-(2,2-diethoxycarbonyl-1-phenylethyl)-L-glutathione (11a), S-2,2-diethoxycarbonyl-1-(3',4'-methylenedioxy)phenylethyl-L-glutathione (11b), S-2,2-diethoxycarbonyl-1-(3',4',5'-trimethoxy)phenylethyl-L-glutathione (11c), S-2,2-diethoxycarbonyl-1-(4'-hydroxy)phenylethyl-L-glutathione (11d), S-2,2-diethoxycarbonyl-1-(4'-methoxy)phenylethyl-L-glutathione (11e) were obtained in good yields. The structure of the adducts was characterized by analytical and spectral data. The effects of pH and solvents upon the yields were also briefly examined. In the range of pH from 4.0 to 8.0, the aqueous methanol were found to be the best solvent for the addition reaction and the antibacterial activities of the adducts to Gram(+) bacteria were found to be weak.

  • PDF

Relationship Between Biological Activity and Structure of Alantolactone (Alantolactone의 구조와 생물학적 활성)

  • 권영명
    • Journal of Plant Biology
    • /
    • v.17 no.2
    • /
    • pp.69-83
    • /
    • 1974
  • To elucidate the relationship between chemical structure and biological activity of alantolactone, and also to investigate the relationship between the growth of cells and the respiration of Chlorella pyrenoidosa affected by alantolactone, alantolactone and isoalantolactone were isolated from Inula helenium L., and di-, and tetrahydroalantolactones were prepared by the hydrogenation. At a concentration of 5$\times$10-5M alantolactone, the growth rate of Chlorella was greatly reduced. The viability of cells was also reduced over 50% within 2 hr at a concentration of 2.5$\times$10-4M alantolactone. However, oxygen uptake was increased by 20% over 3 hr. And 14CO2 production from glucose-1-14C, glucose-6-14C and 14C-acetate-U.L. was also increased by alantolactone. Biological activityof alantolactone was significantly reduced by cysteine, reduced glutathione or cystine but not by tryptophan or histidine. It was detected by spectrophotometrically and by TLC that alantolactone was also reacted with thiols except cystine. The solution of alantolactone reached with thiol gave the UV absorption spectrum of $\alpha$-saturated ${\gamma}$-lactone, and most of SH groups were disappeared by the addition reaction. From the reaction mixture of alantolactone and cysteine, a lactone adduct was isolated and purified. Isoalantolactone had shown similar activity as alantolactone, however, it was appeared that di-, and tetrahydroalantolactones were not only inactive biologically but also in vitro. It was concluded that there was no correlationship between increased respiration rate and mortality of Chlorella. During the respiration TCA cycle was activated, however it was uncertain that the activation of EMP or HMP was also appeared. Alantolactone and isoalantolactone were biologically active compounds but others were inactive. The reactivity of $\alpha$-methylene ${\gamma}$-lactone moiety toward SH group was principally responsible for its biological activity in sesquiterpene lactones.

  • PDF

Cardioprotective Potency of the Antioxidante Amifostine in the Ischemic and Reperfused Isolated Rat Heart (항산화제 Amifostine의 허혈 및 재관류시 흰쥐 적출심장의 심근 보호기능)

  • 허강배;천수봉;김송명
    • Journal of Chest Surgery
    • /
    • v.31 no.9
    • /
    • pp.845-854
    • /
    • 1998
  • Background: S-2-(3 aminoprophlamino) ethylphosphorothioic acid(WR-2721) is one of the radical scavenging thiols. We tested its protective effects in the reperfused heart. Material and Method: The experimental setup was the constant pressure Langendorffs perfusion system. We investigated the radical scavenging properties of this compound in isolated rat hearts which were exposed to 20 minutes ischemia and 20 minutes reperfusion. Four experimental groups were used:group I, control, Amifostine 50 mg(1 mL) peritoneal injection 30 minutes before ischemia(group II), Amifostine 10 mg(0.2 mL) injection during ischemia through coronary artery(group III),and Amifostine 50 mg(1 mL) peritoneal injection 2 hrs before ischemia(group IV). The experimental parameters were the levels of latate, CK-MB, and adenosine deaminase(ADA) in frozen myocardium, the quantity of coronary flow,and left ventricular developed pressure, and it's dp/dt. Statistical analysis was performed using repeated measured analysis of variance and student t-test. Result: The coronary flow of group II and IV were less than group I and III at equilibrium state but recovery of coronary flow at reperfusion state of group II, III, and IV were more increased compared with group I. The change of systolic left ventricular devoloping pressure of group II and IV were less than control group at equilibrium state, which seemed to be the influence of the pharmacological hypotensive effect of amifostine. But it was higher compared with group I at reperfusion state. The lactic acid contents of group II were less than control group in frozen myocardium.(Group I was 0.20 0.29 mM/g vs Group II, which was 0.10 0.11 mM/g). The quantity of CK-MB in myocardial tissue was highest in group IV (P=0.026 I: 120.0 97.8 U/L vs IV: 242.2 79.15 U/L). The adenosine deaminase contents in the coronary flow and frozen myocardium were not significantly different among each group. Conclusion: Amifostine seemed to have significant cardioprotective effect during ischemia and reperfusion injuries of myocardium.

  • PDF

Reaction of Bis(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.132-138
    • /
    • 1994
  • Bis(diethylamino)aluminum hydride was utilized in a systematic study of the approximate rates and stoichiometry of the reaction of excess reagent with 55 selected organic compounds containing representative functional groups under standardized conditions (THF, $0^{\circ}C$, reagent to compound=4 : 1) in order to define the characteristics of the reagent for selective reductions. The reducing action of BEAH was also compared with that of the parent aluminum hydride. The reducing action of the reagent is quite similar to that of aluminum hydride, but the reducing power is much weaker. Aldehydes and ketones were readily reduced in 1-3 h to the corresponding alcohols. However, unexpectedly, a ready involvement of the double bond in cinnamaldehyde was realized to afford hydrocinnamyl alcohol. The introduction of diethylamino group to the parent aluminum hydride appears not to be appreciably influential in stereoselectivity on the reduction of cyclic ketones. Both p-benzoquinone and anthraquinone utilized 2 equiv of hydride readily without evolution of hydrogen, proceeded cleanly to the 1,4-reduction products. Carboxylic acids and acid chlorides underwent reduction to alcohols slowly, whereas cyclic anhydrides utilized only 2 equiv of hydride slowly to the corresponding hydroxylacids. Especially, benzoic acid with a limiting amount of hydride was reduced to benzaldehyde in a yield of 80%. Esters and lactones were also readily reduced to alcohols. Epoxides examined all reacted slowly to give the ring-opened products. Primary and tertiary amides utilized 1 equiv of hydride fast and further hydride utilization was quite slow. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Among them, benzamide and N,N-dimethylbenzamide gave ca, 90% yields of benzaldehyde. Both the nitriles examined were also slowly reduced to the amines. Unexpectedly, both aliphatic and aromatic nitro compounds proved to be relatively reactive to the reagent. On the other hand, azo- and azoxybenzenes were quite inert to BEAH. Cyclohexanone oxime liberated 1 equiv of hydrogen and utilized 1 equiv of hydride for reduction, corresponding to N-hydroxycyclohexylamine. Pyridine ring compounds were also slowly attacked. Disulfides were readily reduced with hydrogen evolution to the thiols, and dimethyl sulfoxide and diphenyl sulfone were also rapidly reduced to the sulfides.

Reaction of Diisobutylaluminum Hydride-Dimethyl Sulfide Complex with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Diisobutylaluminum Hydride and Its Dimethyl Sulfide Complex

  • Cha, Jin-Soon;Jeong, Min-Kyu;Kwon, Oh-Oun;Lee, Keung-Dong;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.873-881
    • /
    • 1994
  • The approximate rate and stoichiometry of the reaction of excess diisobutylaluminum hydride-dimethyl sulfide complex($DIBAH-SMe_2$) with organic compounds containing representative functional group under standardized conditions (toluene, $0{\circ}C$) were examined in order to define the reducing characterstics of the reagent and to compare the reducing power with DIBAH itself. In general, the reducing action of the complex is similar to that of DIBAH. However, the reducing power of the complex is weaker than that of DIBAH. All of the active hydrogen compounds including alcohols, amines, and thiols evolve hydrogen slowly. Aldehydes and ketones are reduced readily and quantitatively to give the corresponding alcohols. However, $DIBAH-SMe_2$ reduces carboxylic acids at a faster rate than DIBAH alone to the corresponding alcohols with a partial evolution of hydrogen. Similarly, acid chlorides, esters, and epoxides are readily reduced to the corresponding alcohols, but the reduction rate is much slower than that of DIBAH alone. Both primary aliphatic and aromatic amides examined evolve 1 equiv of hydrogen rapidly and are reduced slowly to the amines. Tertiary amides readily utilize 2 equiv of hydride for reduction. Nitriles consume 1 equiv of hydride rapidly but further hydride uptake is quite slow. Nitro compounds, azobenzene, and azoxybenzene are reduced moderately. Cyclohexanone oxime liberates ca. 0.8 equiv of hydrogen rapidly and is reduced to the N-hydroxylamine stage. Phenyl isocyanate is rapidly reduced to the imine stage, but further hydride uptake is quite sluggish. Pyridine reacts at a moderate rate with an uptake of one hydride in 48 h, while pyridine N-oxide reacts rapidly with consumption of 2 equiv of hydride for reduction in 6h. Similarly, disulfides and sulfoxide are readily reduced, whereas sulfide, sulfone, and sulfonic acid are inert to this reagent under these reaction conditions.

Reaction of Sodium Tris(diethylamino)aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Jeoung, Min-Kyoo;Kim, Jong-Mi;Kwon, Oh-Oun;Lee, Keung-Dong;Kim, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.881-888
    • /
    • 1994
  • The approximate rates and stoichiometry of the reaction of excess sodium tris(diethylamino)aluminum hydride (ST-DEA) with selected organic compounds containing representative functional groups under standardized conditions(tetrahydrofuran, $0{\circ}$) were studied in order to characterize the reducing characteristics of the reagent for selective reductions. The reducing ability of STDEA was also compared with those of the parent sodium aluminum hydride (SAH) and lithium tris(diethylamino)aluminum hydride (LTDEA). The reagent appears to be milder than LTDEA. Nevertheless, the reducing action of STDEA is very similar to that observed previously for LTDEA, as is the case of the corresponding parent sodium and lithium aluminum hydrides. STDEA shows a unique reducing characteristics. Thus, benzyl alcohol, phenol and 1-hexanol evolved hydrogen slowly, whereas 3-hexanol and 3-ethyl-3-pentanol, secondary and tertiary alcohols, were essentially inert to STDEA. Primary amine, such as n-hexylamine, evolved only 1 equivalent of hydrogen slowly. On the other hand, thiols examined were absolutely stable. STDEA reduced aidehydes and ketones rapidly to the corresponding alcohols. The stereoselectivity in the reduction of cyclic ketones by STDEA was similar to that by LTDEA. Quinones, such as p-benzoquinone and anthraquinone, were reduced to the corresponding 1,4-dihydroxycyclohexadienes without evolution of hydrogen. Carboxylic acids and anhydrides were reduced very slowly, whereas acid chlorides were reduced to the corresponding alcohols readily. Esters and epoxides were also reduced readily. Primary carboxamides consumed hydrides for reduction slowly with concurrent hydrogen evolution, but tertiary amides were readily reduced to the corresponding tertiary amines. The rate of reduction of aromatic nitriles was much faster than that of aliphatic nitriles. Nitrogen compounds examined were also reduced slowly. Finally, disulfide, sulfoxide, sulfone, and cyclohexyl tosylate were readily reduced without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent: like LTDEA, STDEA converted ester and primary carboxamides to the corresponding aldehydes in good yields. Furthermore, the reagent reduced aromatic nitriles to the corresponding aldehydes chemoselectively in the presence of aliphatic nitriles. Consequently, STDEA can replace LTDEA effectively, with a higher selectivity, in most organic reductions.