• Title/Summary/Keyword: Thin-walled

Search Result 700, Processing Time 0.023 seconds

An experimental study on creep deformation of thin-walled tubes under pure bending

  • Hsu, Chien-Min;Fan, Chun-Huei
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.339-347
    • /
    • 2000
  • The creep deformation of pure bending (hold constant moment for a period of time) tests were conducted in this paper. Thin-walled tubes of 304 stainless steel were used in this investigation. The curvature-ovalization measurement apparatus, designed by Pan et al. (1998), was used for conducting the present experiments. It has been found that as soon as the creep deformation is started, the magnitudes of the tube curvature and ovalization of tube cross-section quickly increase. The magnitudes of the creep curvature and ovalization of tube cross-section increase fast with a higher hold moment than that with a lower one. Owing to the continuously increasing curvature during the creep deformation, the tube specimen buckles eventually.

Buckling of thin-walled members analyzed by Mindlin-Reissner finite strip

  • Cuong, Bui H.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.77-91
    • /
    • 2013
  • The paper presents the formulation of 3-nodal line semi-analytical Mindlin-Reissner finite strip in the buckling analysis of thin-walled members, which are subjected to arbitrary loads. The finite strip is simply supported in two opposite edges. The general loading and in-plane rotation techniques are used to develop this finite strip. The linear stiffness matrix and the geometric stiffness matrix of the finite strip are given in explicit forms. To validate the proposed model and study its performance, numerical examples of some thin-walled sections have been performed and the results obtained have been compared with finite element models and the published ones.

Collapse Behavior of Vehicle Structures (처체구조물의 붕괴거동)

  • 김천욱;한병기;원종진;이종선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.54-62
    • /
    • 1998
  • In this study, collapse behavior of frame composed of thin-walled rectangular tube is investigated. Considering the collapse of frame, the bending and compression members undergo large deformation. The stiffness of the compound element is obtained from analytical moment-rotation relationship and approximated load-deflection relationsh- ip of thin-walled rectangular tube. A computer program is developed for the large deformation analysis of frame. An incremental displacement method is used in the program and at each incremental stage, the stiffness matrix of the total structure is checked with the state of each element for bending and compression.

  • PDF

The Relationship Between Local and Overall Buckling of Rectangular Tubes (II) (사각튜브의 국부좌굴과 전체좌굴에 관한 연구 (2))

  • Han, Byeong-Gi;Park, Bog-Hyeon;An, Dae-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.895-904
    • /
    • 1998
  • This paper presents the results of experimental investigation of the buckling behavior of thin-walled box-section column. The experiments for finding the buckling stress and bifurcation slenderness ratio are performed by the method from AISC. The sets of boundary conditions are both end simply supported, one end simply supported and the other end clamped, and both ends clamped. The types of specimens are clssified by thickness to width ratio. The experiments for the thin-walled rectangular tubes are closely concurrent with the theoretical values of overall buckling load and bifurcation slenderness ratio that are suggested by the part (I) of this paper.

Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady Temperature and External Excitation (고온에서 외부 가진력을 받는 회전하는 경사기능 박판 블레이드의 동적응답 해석)

  • Oh, B.Y.;Na, Sung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.643-648
    • /
    • 2004
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics are provided for the case of a biconvex cross section and pertinent conclusions are outlined.

  • PDF

Exact dynamic element stiffness matrix of shear deformable non-symmetric curved beams subjected to initial axial force

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.73-96
    • /
    • 2005
  • For the spatially coupled free vibration analysis of shear deformable thin-walled non-symmetric curved beam subjected to initial axial force, an exact dynamic element stiffness matrix of curved beam is evaluated. Firstly equations of motion and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next a system of linear algebraic equations are constructed by introducing 14 displacement parameters and transforming the second order simultaneous differential equations into the first order simultaneous differential equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact $14{\times}14$ dynamic element stiffness matrix is determined using force-deformation relations. To demonstrate the accuracy and the reliability of this study, the spatially coupled natural frequencies of shear deformable thin-walled non-symmetric curved beams subjected to initial axial forces are evaluated and compared with analytical and FE solutions using isoparametric and Hermitian curved beam elements and results by ABAQUS's shell elements.

Free vibration of core wall structure coupled with connecting beams

  • Wang, Quanfeng
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.263-275
    • /
    • 2000
  • In this paper, a core wall structure coupled with connecting beams is discretized and modeled as an equivalent thin-walled member with closed section, while the connecting beams between openings are replaced by an equivalent shear diaphragm. Then, a numerical method (finite member element method, FMEM) for dynamic analysis of the core wall structure is proposed. The numerical method combines the advantages of the FMEM and Vlasov's thin-walled beam theory and the effects of torsion, warping and, especially, the shearing strains in the middle surface of the walls are considered. The results presented in this paper are very promising compared with the ones obtained from finite element method.

Mechanical properties of thin-walled composite beams of generic open and closed sections

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.591-620
    • /
    • 2005
  • A general analytical model for thin-walled composite beams with an arbitrary open/(or/and) closed cross section and arbitrary laminate stacking sequence i.e., symmetric, anti-symmetric as well as un-symmetric with respect to the mid plane of the laminate, is developed in the first paper. All the mechanical properties, mechanical centre of gravity and mechanical shear centre of the cross section are defined in the function of the geometry and the material properties of the section. A program "fungen" and "clprop" are developed in Fortran to compute all the mechanical properties and tested for various isotropic sections first and compared with the available results. The locations of mechanical centre of gravity and mechanical shear centre are given with respect to the fibre angle variation in composite beams. Variations of bending and torsional stiffness are shown to vary with respect to the fibre angle orientations.

Spatial Free Vibration and Stability Analysis of Thin-Walled Arches with Variable Curvature (곡률이 변하는 박벽 아치의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.169-176
    • /
    • 1999
  • An improved formulation for spatial stability md free vibration of thin-walled curved beams with variable curvature and non-symmetric cross sections are presented based on the displacement field considering the second order terms of finite semitangential rotations. By introducing Vlasov's assumptions, the total potential energy is derived from the principle of linearized virtual work for a continuum. In this formulation, all displacement parameters and the warping function are defined at the centroid axis so that the coupled terms of bending and torsion are added to the elastic strain energy. Also, the potential energy due to initial stress resultants is consistently derived corresponding to the semitangential rotation and moment. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. In order to illustrate the accuracy and practical usefulness of this study, . numerical solutions for free vibration of arches are presented and compared with resells of other researchers and solutions analyzed by the ABAQUS's shell element.

  • PDF

Transverse Shear Behavior of Thin-Walled Composite Beams Using a Mixed Method (혼합법을 이용한 박벽 복합재료 보의 전단변형거동 해석)

  • Park, Il-Ju;Jeong, Sung-Nam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.194-197
    • /
    • 2005
  • In this work, a mixed beam approach is performed to identify the transverse shear behavior of thin-walled composite beams with closed cross-sections. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. The distributions of shear flow across the section as well as the shear correction coefficients are obtained in a closed form in the beam formulation. The influence of transverse shear deformation on the static behavior of closed cross-section composite beams is also investigated in the analysis

  • PDF