• Title/Summary/Keyword: Thin-film manufacturing process

Search Result 171, Processing Time 0.031 seconds

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

Effect of Manufacturing Parameters on Characteristic of Thin Film Resistor (박막저항기 특성에 미치는 제조 공정 인자의 영향)

  • Park Hyun-Sik;Yu Yun-Seop
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.1-7
    • /
    • 2005
  • The effect of trimming process to adjust accurate resistance of a thin-film resistor was studied with respect to low temperature coefficient of resistance(TCR) and high precision. The characteristics of a thin-film resistor fabricated by sputtering were investigated depending on trimming condition and annealing temperature. Measured results showed that the characteristic of a thin-film resistor was degraded with increased trimming speed. However, an average resistance deviation and a TCR were improved to $0.26\%$ and 52.77[ppm/K], respectively, through annealing treatment. Also, thin-film resistors with 1 k$\Omega$ and 10k$\Omega$ showed better performance compared to a resistor with 100k$\Omega$. The Optimal trimming speed and annealing temperature were 20mm/sec and 539K, respectively, and under this optimal condition, a thin-film resistor with an average resistance deviation of $0.31\%$ and a TCR of below 10[ppm/K] was obtained.

  • PDF

Effect of Si grinding on electrical properties of sputtered tin oxide thin films (Si 기판의 연삭 공정이 산화주석 박막의 전기적 성질에 미치는 영향 연구)

  • Cho, Seungbum;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.49-53
    • /
    • 2018
  • Recently, technologies for integrating various devices such as a flexible device, a transparent device, and a MEMS device have been developed. The key processes of heterogeneous device manufacturing technology are chip or wafer-level bonding process, substrate grinding process, and thin substrate handling process. In this study, the effect of Si substrate grinding process on the electrical properties of tin oxide thin films applied as transparent thin film transistor or flexible electrode material was investigated. As the Si substrate thickness became thinner, the Si d-spacing decreased and strains occurred in the Si lattice. Also, as the Si substrate thickness became thinner, the electric conductivity of tin oxide thin film decreased due to the lower carrier concentration. In the case of the thinner tin oxide thin film, the electrical conductivity was lower than that of the thicker tin oxide thin film and did not change much by the thickness of Si substrate.

Structural and Electrical Properties of $CuInSe_2$ Ternary Compound Thin Film ($CuInSe_2$ 박막의 구조적 전기적 특성)

  • Kim, Young-Jun;Yang, Hyeun-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1396-1397
    • /
    • 2006
  • Process variables for manufacturing the $CuInSe_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions (substrate temperature, sputtering pressure, DC/RF Power), and then by changing a number of vapor deposition conditions and Annealing conditions variously, structural and electrical characteristics were measured. Thereby, optimum process variables were derived. For the manufacture of the $CuInSe_2$, Cu, In and Se were vapor-deposited in the named order. Among them, Cu and In were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC/RF power was controlled so that the composition of Cu and In might be 1 : 1, while the surface temperature haying an effect on the quality of the thin film was changed from $100[^{\circ}C]$ to $300[^{\circ}C]$ at intervals of $50[^{\circ}C]$.

  • PDF

Thickness Measurement of a Transparent Thin Film Using Phase Change in White-Light Phase-Shift Interferometry

  • Kim, Jaeho;Kim, Kwangrak;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.505-513
    • /
    • 2017
  • Measuring the thickness of thin films is strongly required in the display industry. In recent years, as the size of a pattern has become smaller, the substrate has become larger. Consequently, measuring the thickness of the thin film over a wide area with low spatial sampling size has become a key technique of manufacturing-yield management. Interferometry is a well-known metrology technique that offers low spatial sampling size and the ability to measure a wide area; however, there are some limitations in measuring the thickness of the thin film. This paper proposes a method to calculate the thickness of the thin film in the following two steps: first, pre-estimation of the thickness with the phase at the peak position of the interferogram at the bottom surface of the thin film, using white-light phase-shift interferometry; second, accurate correction of the measurement by fitting the interferogram with the theoretical pattern through the estimated thickness. Feasibility and accuracy of the method has been verified by comparing measured values of photoresist pattern samples, manufactured with the halftone display process, to those measured by AFM. As a result, an area of $880{\times}640$ pixels could be measured in 3 seconds, with a measurement error of less than 12%.

Study on the Improvement of wear properties of Automobile elements in Titanium alloy Coated (티타늄합금 코팅된 자동차 부품의 마모특성 향상에 관한 연구)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.574-580
    • /
    • 2013
  • In this paper, The process of thin-film coating technology was applied to improve adhesion of the hardness thin film and nitride layer. This thin-film coating technology have formed composite thin-film to gain hardness and toughness used in press mold. The thin-film coating manufacturing technology increased vacuum present in the vacuum chamber and improved the throw ratio of the gun power using physical vapor deposition coating technology. Ti alloys target improved performance and surface material through the development of a composite film coating technology for various precision machining parts.

Measurement of Step Difference using Digital Holography of ITO Thin Film Fabricated by Sputtering Method (스퍼터링 공법으로 제작한 ITO 박막의 디지털 홀로그래피를 이용한 단차에 대한 측정)

  • Jung, Hyun Il;Shin, Ju Yeop;Park, Jong Hyun;Jung, Hyunchul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.84-89
    • /
    • 2021
  • Indium tin oxide (ITO) transparent electrodes, which are used to manufacture organic light-emitting diodes, are used in light-emitting surface electrodes of display EL panels such as cell phones and TVs, liquid crystal panels, transparent switches, and plane heating elements. ITO is a major component that consists of indium and tin and is advantageous in terms of obtaining sheet resistance and light transmittance in a thin film. However, the optical performance of devices decreases with an increase in its thickness. A digital holography system was constructed and measured for the step measurement of the ITO thin film, and the reliability of the technique was verified by comparing the FE-SEM measurement results. The error rate of the step difference measurement was within ±5%. This result demonstrated that this technique is useful for applications in advanced MEMS and NEMS industrial fields.

A Study on Properties of CuInSe2 Thin Films by Substrate Temperature and Annealing Temperature (기판온도와 열처리 온도에 따른 CuInSe2 박막의 특성분석)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.600-605
    • /
    • 2007
  • Process variables for manufacturing the $CuInSe_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions (substrate temperature, sputtering pressure, DC/RF Power), and then by changing a number of vapor deposition conditions and Annealing conditions variously, structural and electrical characteristics were measured. Thereby, optimum process variables were derived. For the manufacture of the $CuInSe_2$, Cu, In and Se were vapor-deposited in the named order. Among them, Cu and In were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC/RF power was controlled so that the composition of Cu and In might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from $100^{\circ}C\;to\;300^{\circ}C$ at intervals of $50^{\circ}C$. The diffract fringe of X-ray, which depended upon the substrate temperature and the Annealing temperature of the manufactured $CuInSe_2$ thin film, was investigated. scanning electron microgaphs of represents a case that a sample manufactured at the substrate temperature of $100^{\circ}C$ was thermally treated at $200{\times}350^{\circ}C$. As a result, at $500^{\circ}C$ of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known that under this condition, the most excellent thin film was formed, compared with the other conditions.

Optical and Heat Transfer Characteristics in a Rapid Thermal Annealing System for LCD Manufacturing Procedures (LCD 제작용 급속 열처리 시스템내의 광학 및 열전달 특성)

  • Lee, Seong-Hyuk;Kim, Hyung-June;Shin, Dong-Hoon;Lee, Joon-Sik;Choi, Young-Ki;Park, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1370-1375
    • /
    • 2004
  • This article investigates the heat transfer characteristics in a RTA system for LCD manufacturing and suggests a way to evaluate the quality of a poly-Si film from the thin film optics analysis. The transient and one-dimensional conductive/radiative heat transfer equation considering wave interference effect is solved to predict surface temperatures of thin films. In dealing with radiative heat transfer, a one-dimensional two-flux method is used and the ray tracing method is also utilized to account for the wave interference effects. It is assumed that each interface is assumed diffusive but the spectral radiative properties are included. It is found that the selective heating region exists for various wavelengths and consequently may contribute to heat the poly-Si film. Using the formalism of the characteristic transmission matrix, the lumped structure reflectance, transmittance, and absorptance are calculated and they are compared with experimental data of the poly-Si film during the SPC process via the FE-RTA (Field-Enhanced RTA) technology.

  • PDF