• Title/Summary/Keyword: Thin-Walled Composite Beam

Search Result 93, Processing Time 0.022 seconds

Automatic analysis of thin-walled laminated composite sections

  • Prokic, A.;Lukic, D.;Ladjinovic, Dj.
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.233-252
    • /
    • 2014
  • In this paper a computer program is developed for the determination of geometrical and material properties of composite thin-walled beams with arbitrary open cross-section and any arbitrary laminate stacking sequence. Theory of thin-walled composite beams is based on assumptions consistent with the Vlasov's beam theory and classical lamination theory. The program is written in Fortran 77. Some numerical examples are given, with complete information about input and output.

Bending Behaviors of CAS and CUS Thick-walled Composite Channel Beam (대칭 및 반 대칭으로 적층된 복합재료 채널 빔의 굽힘 거동)

  • Park, Mi-Jung;Chun, Heoung-Jae;Byun, Jun-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.167-171
    • /
    • 2005
  • The thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results. The correlation between thin and thick walled composite beam was achieved for two different layup configurations which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams.

  • PDF

Structural Modelling of Tapered Composite Aircraft Wings with Initial Angle of Attack using Thin-Walled Beam (얇은 벽 보를 이용한 초기 받음각이 있는 테이퍼형 복합재료 항공기 날개의 구조 모델링)

  • Kim, Keun-Taek;Song, Ohseop
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-11
    • /
    • 2009
  • A structural modelling for study on dynamic characteristics of tapered composite aircraft wings in the form of thin-walled beam is presented. The proposed structural model includes effects of transverse shear flexibility exhibited by the advanced composite materials and warping restraint characterizing elastic anisotropy and induced structural couplings. The complex effects of these factors could have a role in more efficient analysis on those structural models.

  • PDF

Lateral Buckling Analysis of Open Section Composite Laminated Beam Under End-Moment (단모멘트를 받는 개단면 박벽 복합재 보의 횡좌굴 해석)

  • 김만호;신동구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.51-58
    • /
    • 2000
  • Lateral buckling behavior of laminated composite thin-walled I-section beams subjected to bending moment is investigated by applying the nonlinear anisotropic thin-walled beam theory. The constituent laminated thin-walled elements of I-section are assumed to be symmetrically laminated. The bending, twisting, and warping stiffnesses of the cross section are obtained based on the definitions of these stiffnesses In the thin-walled anisotropic beam theory In numerical examples, singly-symmetric I-beams with specially orthotropic, quasi-isotropic, angle-plys and various boundary conditions are considered. To validate the proposed theoretical approach, present analytical solutions are compared with three dimensional finite element solutions.

  • PDF

Analysis of Thick-walled Composite Channel Beam Under Flexural Loading (굽힘 하중을 받는 두꺼운 채널 빔의 해석)

  • 최용진;전흥재;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.69-73
    • /
    • 2003
  • A open section thick composite beam model is suggested in this study. In the model, the primary and secondary warping and transverse shear effects are incorporated. The rigidities associated with thick channel composite beam and thin channel composite beam are obtained and compared. The results show that the difference among rigidities of the thick and thin composite beams increase as the wall thickness increases.

  • PDF

Theory of Thin-Walled, Pretwisted Composite Beams with Elastic Couplings

  • Jung, Sung-Nam;Kim, Chang-Joo;Ko, Jin-Hwan;Kim, Chang-Wan
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.105-119
    • /
    • 2009
  • In this work, the structural response of thin-walled composite beams with pretwist angle is investigated by using a mixed beam approach that combines the stiffness and flexibility methods in a unified manner. The Reissner's semi-complimentary energy functional is used to derive the stiffness matrix that approximates the beam in an Euler-Bernoulli level for extension and bending and Vlasov level for torsion. The bending and torsion-related warpings induced by the pretwist effects are derived in a closed form. The developed theory is validated with available literature and detailed finite element structural analysis results using the MSC/NASTRAN. Pretwisted composite beams with rectangular solid and thin-walled box sections are illustrated to validate the current approach. Acceptable correlation has been achieved for cases considered in this study. The effects of pretwist and fiber orientation angles on the static behavior of pretwisted composite beams are also studied.

Vibration Control of Composite Thin-Walled Beams with a Tip Mass Via Fuzzy Algorithm and Piezoelectric Sensor and Actuator (끝단 질량을 가진 복합재료 박판 보의 퍼지기법과 압전 감지기/작동기를 이용한 진동제어)

  • 이윤규;강호식;송오섭
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.7-14
    • /
    • 2004
  • This paper deals with adaptive fuzzy logic controller design to achieve proper dynamic response of a composite thin-walled beam with a tip mass. In order to check the effectiveness of this controller, three different types of control logic are selected and applied. The adaptive control capabilities provided by a system of piezoactuators bonded or embedded into the structure are also implemented in the system. Results show that the fuzzy logic controller is more effective than the proportional or velocity feedback controller for the vibration control of composite thin-walled beam with a tip mass.

Flexural-torsional Vibration Analysis of Thin-walled C-Section Composite Beams (박벽 C형 복합재료 보의 휨-비틀림 진동 해석)

  • Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • Free vibration of a thin-walled laminated composite beam is studied. A general analytical model applicable to the dynamic behavior of a thin-walled channel section composite is developed. This model is based on the classical lamination theory, and accounts for the coupling of flexural and torsional modes for arbitrary laminate stacking sequence configuration. i.e. unsymmetric as well as symmetric, and various boundary conditions. A displacement-based one-dimensional finite element model is developed to predict natural frequencies and corresponding vibration modes for a thin-walled composite beam. Equations of motion are derived from the Hamilton's principle. Numerical results are obtained for thin-walled composite addressing the effects of fiber angle. modulus ratio. and boundary conditions on the vibration frequencies and mode shapes of the composites.

The Vibration Analysis of Composite-VEM Thin-Walled Rotating Beam Using GHM Methodology (회전하는 복합재-VEM 박판보의 GHM 기법을 이용한 진동해석)

  • 박재용;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, warping restraint, anisotropy of constituent materials, and warping and rotary inertias. The VEM layer damping treatment is modeled by using the Golla-Mushes-McTavish(GHM) method, which is employed to account for the frequency-dependent characteristic o the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF

Transverse Shear Behavior of Thin-Walled Composite Beams Using a Mixed Method (혼합법을 이용한 박벽 복합재료 보의 전단변형거동 해석)

  • Park, Il-Ju;Jeong, Sung-Nam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.194-197
    • /
    • 2005
  • In this work, a mixed beam approach is performed to identify the transverse shear behavior of thin-walled composite beams with closed cross-sections. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. The distributions of shear flow across the section as well as the shear correction coefficients are obtained in a closed form in the beam formulation. The influence of transverse shear deformation on the static behavior of closed cross-section composite beams is also investigated in the analysis

  • PDF