• Title/Summary/Keyword: Thin-Film Solar Cell

Search Result 622, Processing Time 0.03 seconds

Fabrication and characteristics of the flexible DSSC

  • Choe, Eun-Chang;Choe, Won-Chang;Wi, Jin-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.400.2-400.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next generation solar cell because of their simple structure and low manufacturing cost. To realize a commercially competitive technology of DSSCs, it is imperative to employ a technique to prepare nanocrystlline thin film on the flexible organic substrate, aiming at increasing the flexibility and reducing the weight as well as the overall device thickness of DSSCs. The key operation of glass-to-plastic substrates conversion is to prepare mesoporous TiO2 thin film at low temperature with a high surface area for dye adsorption and a high degree of crystallinity for fast transport of electrons. However, the electron transport in the TiO2 film synthesized at low temperature is very poor. So, in this study, TiO2 films synthesized at high temperature were transferred on the selective substrate. We fabricated DSSCs at low temperature using this method. So, we confirmed that the performance of DSSCs using TiO2 films synthesized at high temperature was improved.

  • PDF

Influence of (Ga,Al) : ZnO Window Layer Thickness on the Performance of CIGS Thin Film Solar Cells ((Ga,Al):ZnO 투명전극층의 두께에 따른 CIGS 박막 태양전지의 성능 변화 연구)

  • Cha, Jung-Hwa;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.28-32
    • /
    • 2017
  • In this paper, (Ga,Al):ZnO layers were deposited by sputtering to evaluate the device performance according to the thickness of the layer. As the thickness increased, low transmittance was observed, but the electrical resistance was improved. On the other hand, the highest efficiency was recorded at 400 nm device than a 500 nm of it. Therefore, since the critical thickness exists, it is necessary to set an adequate TCO layer thickness in consideration of the characteristics of the underlying film and the device.

Technology Trends and Prospects of Silicon Solar Cells (실리콘 태양전지의 기술현황 및 전망)

  • Park, Cheolmin;Cho, Jaehyun;Lee, Youngseok;Park, Jinjoo;Ju, Minkyu;Lee, Youn-Jung;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • The current solar cell industry is experiencing a temporary plateau due to a sluggish economy and oversupply. It is expected that the solar industry can see similar growth to that of the recent past by overcoming the current situation, as there is growing demand globally for solar energy. The current situation led to restructuring of the world's solar industry, and domestic firms will need to have competitiveness through strategic approaches and proprietary technology to survive in the global solar market. Crystalline and amorphous silicon based solar cells have led the solar industry and occupied half or more of the market thus far. They will do so in the future PV market as well by playing a pivotal role in the solar industry. In this paper, the current status and prospects of silicon based solar cells, from materials to comprehensive and high efficiency technology that can emerge in the future, are discussed.

Study on Surface Morphology and Transmittance of Copper Oxide Thin Films Prepared by an Oxidation Reaction (산화반응으로 형성된 구리산화물 박막의 표면형상 및 투과율 특성에 관한 연구)

  • Lee, Eun Kyu;Park, Daesoo;Yoon, Hoi Jin;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.651-655
    • /
    • 2017
  • This work reports the surface morphology and transmittance of copper oxide thin films for semitransparent solar cell applications. We prepared the oxide specimens by subjecting copper thin films to an oxidation reaction at annealing temperatures ranging between $100^{\circ}C$ and $300^{\circ}C$. The color of the as-deposited specimen was red, but changed to purple at the annealing temperature of $300^{\circ}C$. The surface morphology and transmittance of the specimens were significantly dependent on the annealing temperature and thickness of the copper films. Copper oxide nanoparticles prepared from a 20-nm-thick copper film at an annealing temperature of $300^{\circ}C$ provided a maximum transmittance of 93%. The obtained optical characteristics and surface morphology suggest that copper oxide thin films prepared by an oxidation reaction can be potentially employed as color- and transmittance-adjusting layer in semitransparent thin solar cells.

Influence of Selenization Temperature on the Properties of Cu2ZnSnSe4 Thin Films (Selenization 온도가 Cu2ZnSnSe4 박막의 특성에 미치는 영향)

  • Yeo, Soo Jung;Gang, Myeng Gil;Moon, Jong-Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.97-100
    • /
    • 2015
  • The kesterite $Cu_2ZnSnSe_4$ (CZTSe) thin film solar cells were synthesized by selenization of sputtered Cu/Sn/Zn metallic precursors on Mo coated soda lime glass substrate in Ar atmosphere. Cu/Sn/Zn metallic precursors were deposited by DC magnetron sputtering process with 30 W power at room temperature. As-deposited metallic precursors were placed in a graphite box with Se pellets and selenized using rapid thermal processing furnace at various temperature ($480^{\circ}C{\sim}560^{\circ}C$) without using a toxic $H_2Se$ gas. Effects of Selenization temperature on the morphological, crystallinity, electrical properties and cell efficiency were investigated by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD), J-V measurement system and solar simulator. Further details about effects of selenization temperature on CZTSe thin films will be discussed.

Ultra Broadband Absorption of SPPs Enhanced Dual Grating Thin Film CIGS Solar Cell Enabled by Particle Swarm Optimization

  • Le, DuyKhanh;Tran, QuyetThang;Lee, Sangjun;Kim, Sangin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.429-435
    • /
    • 2014
  • We examined the effective utilization of Particle Swarm Optimization (PSO) to enhance the light absorption performance in thin CuIn1-xGaxSe2 (CIGS) solar cells with dual (top and bottom) gratings. The PSO tuned structure was demonstrated to be capable of achieving high and ultra broadband absorption spectra due to well-spaced and well-defined absorption peaks, which were SPPs and photonic modes induced by the metal and dielectric gratings. For only TM polarization and both polarizations, the fully optimized net absorptions exhibit 85.6% and 78.1%, which correspond to ~35.4% and ~23.5% improvement compared to optimized flat structures, respectively.

Fabrication and Properties of pn Diodes with Antimony-doped n-type Si Thin Film Structures on p-type Si (100) Substrates (p형 Si(100) 기판 상에 안티몬 도핑된 n형 Si박막 구조를 갖는 pn 다이오드 제작 및 특성)

  • Kim, Kwang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.39-43
    • /
    • 2017
  • It was confirmed that the silicon thin films fabricated on the p-Si (100) substrates by using DIPAS (DiIsoPropylAminoSilane) and TDMA-Sb (Tris-DiMethylAminoAntimony) sources by RPCVD method were amorphous and n-type silicon. The fabricated amorphous n-type silicon films had electron carrier concentrations and electron mobilities ranged from $6.83{\times}10^{18}cm^{-3}$ to $1.27{\times}10^{19}cm^{-3}$ and from 62 to $89cm^2/V{\cdot}s$, respectively. The ideality factor of the pn junction diode fabricated on the p-Si (100) substrate was about 1.19 and the efficiency of the fabricated pn solar cell was 10.87%.

  • PDF

Stacking of functional inks for organic solar cell using inkjet printing (잉크젯 프린팅을 이용한 유기태양전지용 기능성 잉크의 적층)

  • Kim, Myong-Ki;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Heui-Seok;Kang, Kyung-Tae;Kim, Jong-Seok;Cho, Young-Joon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.398-401
    • /
    • 2008
  • Inkjet printing is commonly used in the controlled deposition of solutions of functional materials in specific locations on a substrate, and it can provide easy and fast deposition of polymer films over a large area. which could become a way to manufacturer low cost solar cells. In the present study, inkjet printing technology is adopted to deposit functional layers of PEDOT/PSS solutions and P3HT/PCBM blends for organic solar cell. The results show that merging of separately deposited ink droplets into a continuous, pinhole-free organic thin film could be achieved by a balance between ink property and substrate treatment. As a result, a power conversion efficiency of 2.0% has been accomplished a solar cells applying inkjet technology.

  • PDF

Annealing and In Interlayer Effects on the Photovoltaic Properties of CBD-In2S3/CIGS Solar Cells (열처리와 In 중간층 적용에 의한 CBD-In2S3/CIGS 태양전지의 특성 향상)

  • Kim, Hee-Seop;Kim, Ji-Hye;Shin, Dong-Hyeop;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.432-438
    • /
    • 2011
  • In this study, chemical bath deposited (CBD) indium sulfide buffer layers were investigated as a possible substitution for the cadmium sulfide buffer layer in CIGS thin film solar cells. The performance of the $In_2S_3$/CIGS solar cell dramatically improved when the films were annealed at $300^{\circ}C$ in inert gas after the buffer layer was grown on the CIGS film. The thickness of the indium sulfide buffer layer was 80 nm, but decreased to 60 nm after annealing. From the X-ray photoelectron spectroscopy it was found that the chemical composition of the layer changed to indium oxide and indium sulfide from the as-deposited indium hydroxide and sulfate states. Furthermore, the overall atomic concentration of the oxygen in the buffer layer decreased because deoxidation occurred during annealing. In addition, an In-thin layer was inserted between the indium sulfide buffer and CIGS in order to modify the $In_2S_3$/CIGS interface. The $In_2S_3$/CIGS solar cell with the In interlayer showed improved photovoltaic properties in the $J_{sc}$ and FF values. Furthermore, the $In_2S_3$/CIGS solar cells showed higher quantum efficiency in the short wavelength region. However, the quantum efficiency in the long wavelength region was still poor due to the thick buffer layer.