• Title/Summary/Keyword: Thin plastic substrate

Search Result 110, Processing Time 0.057 seconds

Characteristics of low temperature poly-Si thin film transistor using excimer laser annealing (엑시머 레이저를 이용한 저온 다결정 실리콘 박막 트랜지스터의 특성)

  • Kang, Soo-Hee;Kim, Yong-Hoon;Han, Jin-Woo;Seo, Dae-Shik;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.430-431
    • /
    • 2006
  • This letter reports the fabrication of polycrystalline silicon thin-film transistors (poly-Si TFT) on flexible plastic substrates using amorphous silicon (a-Si) precursor films by sputter deposition. The a-Si films were deposited with mixture gas of argon and helium to minimize the argon incorporation into the film. The precursor films were then laser crystallized using XeCl excimer laser irradiation and a four-mask-processed poly-Si TFTs were fabricated with fully self-aligned top gate structure.

  • PDF

Multifunctional Indium Tin Oxide Thin Films

  • Jang, Jin-Nyeong;Jang, Yun-Seong;Yun, Jang-Won;Lee, Seung-Jun;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.162-162
    • /
    • 2016
  • We present multifunctional indium tin oxide (ITO) thin films formed at room temperature by a normal sputtering system equipped with a plasma limiter which effectively blocks the bombardment of energetic negative oxygen ions (NOIs). The ITO thin film possesses not only low resistivity but also high gas diffusion barrier properties even though it is deposited on a plastic substrate at room temperature without post annealing. Argon neutrals incident to substrates in the sputtering have an optimal energy window from 20 to 30 eV under the condition of blocking energetic NOIs to form ITO nano-crystalline structure. The effect of blocking energetic NOIs and argon neutrals with optimal energy make the resistivity decrease to $3.61{\times}10-4{\Omega}cm$ and the water vapor transmission rate (WVTR) of 100 nm thick ITO film drop to $3.9{\times}10-3g/(m2day)$ under environmental conditions of 90% relative humidity and 50oC, which corresponds to a value of ~ 10-5 g/(m2day) at room temperature and air conditions. The multifunctional ITO thin films with low resistivity and low gas permeability will be highly valuable for plastic electronics applications.

  • PDF

Transfer of Heat-treated ZnO Thin-film Plastic Substrates for Transparent and Flexible Thin-film Transistors (투명 유연 박막 트랜지스터의 구현을 위한 열처리된 산화아연 박막의 전사방법 개발)

  • Kwon, Soon Yeol;Jung, Dong Geon;Choi, Young Chan;Lee, Jae Yong;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.182-185
    • /
    • 2018
  • Zinc oxide (ZnO) thin films have the advantages of growing at a low temperature and obtaining high charge mobility (carrier mobility) [1]. Furthermore, the zinc oxide thin film can be used to control application resistance depending on its oxygen content. ZnO has the desired physical properties, a transparent nature, with a flexible display that makes it ideal for use as a thin-film transistor. Though these transparent flexible thin-film transistors can be manufactured in various manners, manufacturing large-area transistors using a solution process is easier owing to the low cost and flexible substrate. The advantage of being able to process at low temperatures has been attracting attention as a preferred method. However, in the case of a thin-film transistor fabricated through a solution process, it is reported that charge mobility is lower. To improve upon this, a method of improving the crystallinity through heat treatment and increasing electron mobility has been reported. However, as the heat treatment temperature is relatively high at $500^{\circ}C$, an application where a flexible substrate is absent would be more suitable.

Design of the Platform for a Nanoparticle thin Film Thermoelectric Device transforming Body Heat into Electricity (체온 이용이 가능한 나노입자 박막 열전소자의 플랫폼 개발연구)

  • Yang, Seunggen;Cho, Kyoungah;Choi, Jinyong;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.174-176
    • /
    • 2016
  • In this study, we maximize the temperature difference between the ends of a HgTe nanoparticle(NP) thin film on a thermoelectric platform with a through-substrate via. The thermoelectric characteristics of the HgTe NP thin film show p-type behavior and its Seebeck coefficient is $290{\mu}V/K$. In addition, we demonstrate the possibility of wearable thermoelectric devices transforming body heat into electricity from through-substrate via thermoelectric platforms on human skin.

The Laminating process for Single Substrate Flexible LCD

  • Bae, Kwang-Soo;Choi, Yoon-Seuk;Kim, Hak-Rin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1125-1128
    • /
    • 2007
  • The laminating technique for developing flexible liquid crystal display was demonstrated by using a thin UV curable polymer film and a plastic substrate with patterned polymer wall structure. We adopted the rigid wall structure to provide a solid mechanical support for the stable molecular alignment of liquid crystals (LCs) in the device. The cover film was prepared to have an ability of aligning LC molecules by patterning a micro-groove structure using the soft-lithographic process. These two substrates can be assembled tightly by the laminating and one-step UV irradiation process because of the adhesive nature of the used UV curable polymers. Proposed method can be used to fabricate the flexible LC display with simplicity and also be applicable for a cost-effective roll-to-roll process.

  • PDF

Ultra Thin Film Barrier Layer for Plastic OLED

  • Kopark, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Yang, Yong-Suk;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.44-47
    • /
    • 2004
  • Fabrication of barrier layer on PES substrate and plastic OLED device by atomic layer deposition are carried out. Simultaneous deposition of 30nm of $AlO_x$ film on both sides of PES gives film MOCON value of 0.0615g/$m^2$.day (@38$^{\circ}C$, 100% R.H). Introduction of conformal $AlO_x$ film by ALD resulted in enhanced barrier properties for inorganic double layered film including PECVO $SiN_x$. Preliminary life time to 91% of initial luminance (1300 cd/$m^2$ ) for 100nm of PECVD $SiN_x$/30nm of ALD $AlO_x$ coated plastic OLED device was 260 hours.

  • PDF

Influence of AZO Thin Films Grown on Transparent Plastic Substrate with Various Working Pressure and $O_2$ Gas Flow Rate (공정 압력과 산소 가스비가 투명 플라스틱 기판에 성장시킨 AZO 박막에 미치는 영향)

  • Lee, Jun-Pyo;Kang, Seong-Jun;Joung, Yang-Hee;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.15-20
    • /
    • 2010
  • In this study, AZO (Al: 3 wt%) thin films have been prepared on PES Plastic substrates at various working pressure (5~20 mTorr), $O_2$ gas flow rate(0~3%) and the fixed substrate temperature of 200 f by using the RF magnetron sputtering and their optical and electrical properties have been studied. The XRD measurement shows that AZO thin films exhibit c-axis preferred orientation. From the results of AFM measurements, it is known that the lowest surface roughness (3.49 nm) is obtained for the AZO thin film fabricated at 5 mTorr of working pressure and 3% of $O_2$ gas flow rate. The optical transmittance of AZO thin films is measured as 80% in the visible region. We observe that the energy band gap of AZO thin films increases with decreasing the working pressure and the $O_2$ gas flow rate. This phenomenon is due to the Burstein-Moss effect. Hall measurement shows that the maximum carrier concentration ($2.63\;{\times}\;10^{20}\;cm^{-3}$) and the minimum resistivity ($4.35\;{\times}\;10^{-3}\;{\Omega}cm$) are obtained for the AZO thin film fabricated at 5mTorr of working pressure and 0% of $O_2$ gas flow rate.

Flexible, Transparent Thin-Film Transistors Fabricated by Ink-Jet Printing with Carbon Nanotube-Based Conducting Ink

  • Lee, Yeon-Ju;Lee, Woo-Suk;Jeong, Soo-Kyeong;Choi, Seok-Ju;Kim, Hye-Min;Chun, Jin-Young;Kim, Sung-Ho;Geckeler, Kurt E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.920-922
    • /
    • 2009
  • Flexible, transparent thin-film transistor with active layers composed of carbon nanotube-based conducting ink were fabricated on a plastic substrate by ink-jet printing. The properties of the formulated conducting ink containing carbon nanotubes, a conducting polymer, and additives were characterized and optimized. The conducting ink was applied to flexible thin-film transistors using ink-jet printing.

  • PDF

Flexible electronic-paper active-matrix displays

  • Huitema, H.E.A.;Gelinck, G.H.;Lieshout, P.J.G. Van;Veenendaal, E. Van;Touwslager, F.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.141-144
    • /
    • 2004
  • A QVGA active-matrix backplane is produced on a 25${\mu}m$ thin plastic substrate. A 4-mask photolithographic process is used. The insulator layer and the semiconductor layer are organic material processed from solution. This backplane is combined with the electrophoretic display effect supplied by SiPix and E ink, resulting in an electronic paper display with a thickness of only 100${\mu}m$. This is world's thinnest active-matrix display ever made.

  • PDF

Properties of IZTO Thin Films Deposited on PEN Substrates with Different Working Pressures

  • Park, Jong-Chan;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.224-227
    • /
    • 2015
  • In this work, the properties of Indium-Zinc-Tin-Oxide (IZTO) thin films, deposited on polyethylene naphthalate (PEN) with a $SiO_2$ buffer layer, were analyzed with different working pressures. After depositing the $SiO_2$ buffer layer on PEN substrates by plasma-enhanced chemical vapor deposition (PECVD), the IZTO thin films were deposited by RF magnetron sputtering with 1 to 7-mTorr working pressure. All the IZTO thin films show an amorphous structure, regardless of the working pressure. The best morphological, electrical, and optical properties are obtained at 3-mTorr working pressure, with a surface roughness of 2.112-nm, a sheet resistance of $8.87-{\Omega}/sq$, and a transmittance at 550-nm of 88.44%. These results indicate that IZTO thin films deposited on PEN have outstanding electrical and optical properties, and the PEN plastic substrate is a suitable material for display devices.