• Title/Summary/Keyword: Thin liquid film

Search Result 532, Processing Time 0.028 seconds

Numerical Study of Bubble Growth in a Microchannel (미세관에서의 기포성장에 관한 수치적 연구)

  • Seo, Ki-Chel;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.996-1003
    • /
    • 2004
  • The bubble motion during nucleate boiling in a microchannel is investigated by numerically solving the equations governing conservation of mass, momentum and energy in the liquid and vapor phases. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. Also, the evaporative heat flux from the thin liquid film that forms underneath a growing bubble attached to the wall is incorporated in the analysis. Based on the numerical results, the effects of channel size, contact angle, wall superheat and waiting period on the bubble growth and heat transfer in a microchannel are quantified.

Dynamic Pixel Models for a-Si TFT-LCD and Their Implementation in SPICE

  • Wang, In-Soo;Lee, Gi-Chang;Kim, Tae-Hyun;Lee, Won-Jun;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.633-636
    • /
    • 2012
  • A dynamic analysis of an amorphous silicon (a-Si) thin film transistor liquid crystal display (TFT-LCD) pixel is presented using new a-Si TFT and liquid crystal (LC) capacitance models for a Simulation Program with Integrated Circuit Emphasis (SPICE) simulator. This dynamic analysis will be useful when predicting the performance of LCDs. The a-Si TFT model is developed to accurately estimate a-Si TFT characteristics of a bias-dependent gate to source and gate to drain capacitance. Moreover, the LC capacitance model is developed using a simplified diode circuit model. It is possible to accurately predict TFT-LCD characteristics such as flicker phenomena when implementing the proposed simulation model.

Estimation of diffusion coefficient at the interface between liquid and vapor phases using the equilibrium molecular dynamics simulation (분자 동역학 모사를 이용한 액상과 기상 계면에서의 확산계수의 예측)

  • Kim, Kyeong-Yun;Choi, Young-Ki;Kwon, Oh-Myoung;Park, Seung-Ho;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1584-1589
    • /
    • 2003
  • This work applies the equilibrium molecular dynamics simulation method to study a Lennard-Jones liquid thin film suspended in the vapor and calculates diffusion coefficients by Green-Kubo equation derived from Einstein relationship. As a preliminary test, the diffusion coefficients of the pure argon fluid are calculated by equilibrium molecular dynamics simulation. It is found that the diffusion coefficients increase with decreasing the density and increasing the temperature. When both argon liquid and vapor phases are present, the effects of the system temperature on the diffusion coefficient are investigated. It can be seen that the diffusion coefficient significantly increases with the temperature of the system.

  • PDF

A Numerical Study on Patterning Process Including a Self-Alignment Technique of a Microdroplet (미세액적의 자기정렬 기법을 포함한 패터닝 공법에 대한 해석적인 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.28-38
    • /
    • 2009
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The liquid-air interface is tracked by a level-set method, which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid-gas interface and the no-slip condition at the fluid-solid interface. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

2-Dimensional colloidal micropatterning of cholesteric liquid crystal microcapsules for temperature-responsive color displays

  • Lee, Woo Jin;Kim, Bohyun;Han, Sang Woo;Seo, Minjeong;Choi, Song-Ee;Yang, Hakyeong;Kim, Shin-Hyun;Jeong, Sohee;Kim, Jin Woong
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.393-398
    • /
    • 2018
  • This work offers a promising approach for development of a temperature-responsive colorimetric display platform. For this purpose, uniform thermochromic microcapsules consisting of a cholesteric liquid crystal (CLC) core and a thin polyurethane shell layer were fabricated by conducting in-situ condensation polymerization at the interface of monodisperse CLC-in-water emulsion drops. Colloidal packing-driven microcapsule registry led to exact 2-dimensional positioning of CLC microcapsules into a holes-patterned flexible film stencil. Furthermore, we showed that the designated registry of different color types of CLC microcapsules on the stencil enabled development of a microwriting display technology capable of reversible text representation according to temperature change.

Phase Intergrowth in the Syntheses of BSCCO Thin Films

  • Park, No-Bong;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.736-741
    • /
    • 2002
  • Phase intergrowth some kinds of the $Bi_2Sr_2Ca_{n-1}Cu_nO_y$ phases is observed in the thin film fabrication at ultralow co-deposition with multi targets by means of ion beam sputtering. The molar fraction of the Bi2212 phase in the mixed crystal of the grown films is investigated as a function of the applied ozone pressure and the substrate temperature. The activation energy for the phase transformation from the Bi2201 to the Bi2212 is estimated in terms of the Avrami equation. This study reveals that the formation of a liquid phase contributes significantly to the construction of the Bi2212 phase in the thin films, differing from the bulk synthesis.

Phase Intergrowth in the Syntheses of Bi-superconducting Thin Films

  • Chun, Min-Woo;An, In-Soon;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.490-493
    • /
    • 2002
  • Phase intergrowth some kinds of the Bi$_2$Sr$_2$Ca$\_$n-1/Cu$\_$n/O$\_$y/ phases is observed in the thin film fabrication at ultralow co-deposition with multi targets by means of ion beam sputtering. The molar fraction of the Bi2212 phase in the mixed crystal of the grown films is investigated as a function of the applied ozone pressure and the substrate temperature. The activation energy for the phase transformation from the Bi2201 to the Bi2212 is estimated in terms of the Avrami equation. This study reveals that the formation of a liquid phase contributes significantly to the construction of the Bi2212 phase in the thin films, differing from the bulk synthesis.

  • PDF

The crystallinity and electrical characteristics of low density polyetylene thin film (저밀도 폴리에틸렌 필림의 결정화도 및 전기적 특성)

  • 윤중락;권정열;이헌용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.164-168
    • /
    • 1996
  • The relation between crystallinity and thermal history in low density polyethylene thin films and their effect on electric conduction phenomena and dielectric breakdown was studied. The low density polythylene thin films obtained by the solution growth method heat-treated at 140[$^{\circ}C$] for 2 h and subsequently cooling to various ways. The degree of crystallinity was estimated by the X-ray diffraction measurement for the specimen of slowly cooling, ICE quenching and liquid nitrogen quenching. The result shows that the crystallinity decreases become faster as the cooling speed increased, and that conduction phenomenon is governed by the space charge limited current in high field. It was found that the dielectric breakdown field increases with an increase in cooling speed and test number in self-healing breakdown method.

  • PDF

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

PVA Technology for High Performance LCD Monitors

  • Kim, Kyung-Hyun;Song, Jang-Geun;Park, Seung-Bam;Lyu, Jae-Jin;Souk, Jun-Hyung;Lee, Khe-Hyun
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.3-8
    • /
    • 2000
  • We have developed a high performance vertical alignment TFT-LCD (Thin Film Transistor Liquid Crystal Display), that shows a high light transmittance, and wide viewing angle characteristics with an unusually high contrast ratio. In order to optimize the electro-optical properties we have studied the effect of cell parameters, multi-domain structure and retardation film compensation. With the optimized cell parameters and process conditions, we have achieved a 24" wide UXGA TFTLCD monitor (16:10 aspect ratio 1920X1200) showing a contrast ratio of over 500:1, panel transmittance near 4.5%, response time near 25 ms, and viewing angle higher than 80 degree in all directions.

  • PDF