• Title/Summary/Keyword: Thin film silicon

Search Result 1,233, Processing Time 0.03 seconds

Electrochemical Characteristics of the Silicon Thin Films on Copper Foil Prepared by PECVD for the Negative Electrodes for Lithium ion Rechargeable Battery (PECVD법으로 구리 막 위에 증착된 실리콘 박막의 이차전지 음전극으로서의 전기화학적 특성)

  • Shim Heung-Taek;Jeon Bup-Ju;Byun Dongjin;Lee Joong Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.173-178
    • /
    • 2004
  • Silicon thin film were synthesized from silane and argon gas mixture directly on copper foil by rf PECVD and then lithium ion batteries were prepared from them employed as the negative electrodes without any further treatment. In the present study, two different kinds of silicon thin films, amorphous silicon and copper silicide were prepared by changing deposition temperature. Amorphous silicon film was prepared below $200^{\circ}C$, but copper silicide film with granular shape was formed by the reaction between silicon radical and diffused copper ions under elevating temperature above $400^{\circ}C$. The amorphous silicon film gives higher capacity than copper silicide, but the capacity decreases sharply with charge-discharge cycling. This is possibly due to severe volume changes. The cyclability is improved, however, by employing the copper silicide as a negative electrode. The copper silicide plays an important role as an active material of the electrode, which mitigates volume change cause by the existence of silicon and copper chemical bonding and provides low electrical resistance as well.

Enhanced Crystallization of Amorphous Silicon using Electric Field

  • Song, Kyung-Sub;Jun, Seung-Ik;Park, Sang-Hyun;Park, Duck-Kyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.243-246
    • /
    • 1997
  • A new technique for low temperature crystallization of amorphous silicon, called field aided lateral crystallization(FALC) was attempted. To demonstrate the concept of FALC, thin layer of nickel(30${\AA}$) was deposited on top of amorphous silicon film and the electric field was applied during the crystallization. The effects of electric field on the crystallization behavior of amorphous silicon film were investigated.

  • PDF

Performance Evaluation of Thin Film PZT IR detectors in terms of Silicon Substrate Thickness (실리콘 기판 두께에 따른 PZT 박막 적외선 감지소자의 성능 변화)

  • Go, Jong-Su;Liu, Weiguo;Zhu, Weiguang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.781-790
    • /
    • 2001
  • The effects of silicon substrate thickness on the performance of thin film PZT IR detectors are theoretically and experimentally investigated. Theoretical analyses show that the pyroelectric current responsivity of a detector without a silicon substrate is about two orders higher than that of a detector with a 450${\mu}{\textrm}{m}$ thick silicon substrate. At a fixed chopping frequency of 100Hz, the pyroelectric current responsivity decreases exponentially with increasing silicon substrate thickness up to 50${\mu}{\textrm}{m}$, and above 50${\mu}{\textrm}{m}$ the decreasing rate become slow. The thinner the silicon substrate is, the less the thermal loss by conduction is , and thus the higher responsivity is resulted. To verify the theoretical analyses, micromachined PZT thin film IR detectors with different silicon substrate thicknesses are fabricated and characterized. The theoretical and experimental results show the similar tendencies for all silicon substrates with varying thickness.

  • PDF

The microstructure of polycrystalline silicon thin film that fabricated by DC magnetron sputtering

  • Chen, Hao;Park, Bok-Kee;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.332-333
    • /
    • 2008
  • DC magnetron sputtering was used to deposit p-type polycrystalline silicon on n-type Si(100) wafer. The influence of film microstructure properties on deposition parameters (DC power, substrate temperature, pressure) was investigated. The substrate temperature and pressure have the important influence on depositing the poly-Si thin films. Smooth ploy-Si films were obtained in (331) orientation and the average grain sizes are ranged in 25-30nm. The grain sizes of films deposited at low pressure of 10mTorr are a little larger than those deposited at high pressure of 15mTorr.

  • PDF

Relationship between Secondary Electron Emissions and Film Thickness of Hydrogenated Amorphous Silicon

  • Yang, Sung-Chae;Chu, Byung-Yoon;Ko, Seok-Cheol;Han, Byoung-Sung
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.185-189
    • /
    • 2004
  • The temporal variation of a secondary electron emission coefficient (${\gamma}$ coefficient) of hydrogenated amorphous silicon (a-Si:H) was investigated in a dc silane plasma. Estimated ${\gamma}$ coefficients have a value of 2.73 ${\times}$ 10$^{-2}$ on the pure aluminum electrode and 1.5 ${\times}$ 10$^{-3}$ after 2 hours deposition of -Si:H thin films on a cathode. It showed an abrupt decrease for about 30 minutes before saturation. The variation of the ${\gamma}$ coefficient was estimated as a function of the thin film thickness, and the film thickness was about 80 nm after 30 minutes deposition time. These results are compared with the results of a computer simulation for ion penetration into a cathode.

Fabrication of Ultra Low Temperature Poly crystalline Silicon Thin-Film Transistors on a Plastic Substrate (고분자 기판 상에 제작된 극저온 다결정 실리콘 박막 트랜지스터에 관한 연구)

  • Kim, Yong-Hoon;Kim, Won-Keun;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.445-446
    • /
    • 2005
  • This letter reports the fabrication of polycrystalline silicon thin-film transistors (poly-Si TFT) on flexible plastic substrates using amorphous silicon (a-Si) precursor films by sputter deposition. The a-Si films were deposited with mixture gas of argon and helium to minimize the argon incorporation into the film. The precursor films were then laser crystallized using XeCl excimer laser irradiation and a four-mask-processed poly-Si TFTs were fabricated with fully self-aligned top gate structure.

  • PDF

Optical properties of nanocrystalline silicon thin films depending on deposition parameters (박막증착조건 변화에 따른 실리콘 나노결정 박막의 광학적 특성)

  • Kim, Gun-Hee;Kim, Jong-Hoon;Jeon, Kyung-Ah;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.173-176
    • /
    • 2004
  • Silicon thin films on p-type(100) silicon substrate have been prepared by a pulsed laser deposition(PLD) technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was 1 Torr. After deposition, silicon thin film has been annealed in nitrogen ambient. Strong blue photoluminescence(PL) has been observed at room temperature. We report the optical properties of silicon thin films with the variation of the deposition parameters.

  • PDF

The Research via Linear of Tantalum Thin Film Thickness Depending on Revolution Velocity of Spin Coater (스핀코터 회전속도에 따른 탄탈륨 박막두께의 선형모델에 관한 연구)

  • Kim, Seung Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.17-22
    • /
    • 2020
  • Recently, the decrease in thin film thickness has been actively studied by changing several physical elements such as the increase in revolution velocity of lower substrate equipped with AC or DC motor. In this paper, we propose a novel spin coater control system that changes AC or DC motor and common use software with limitation of velocity and position control into step motor and LABVIEW software based on GUI to control revolution velocity and position more precisely. By determining six input values of rotation velocity 1, 5, 10, 25, 50, 100 PPS, we fabricated six samples using coating target, TA(tantalum) on silicon substrate and measured their thin film thickness by SEM. Hence, this research can be applied to inferring thin film thickness of tantalum regarding any value of revolution velocity without additional experiments and for linear reference model via property analysis of thin film thickness using other thin-film materials.

A Study on the Change of Si Thin Film Characteristics to Find Design Rules for Sputtering Equipment (스퍼터 장비의 설계 룰을 찾기 위한 Si박막 특성 변화 연구)

  • Kim, Bo-Young;Kang, Seo Ik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.100-105
    • /
    • 2020
  • Recently, as display and semiconductor devices have been miniaturized and highly integrated, there is a demand for optimization of the structural characteristics of the thin film accordingly. The sputtering device has the advantage of stably obtaining a desired thin film depending on the material selected for the target. However, due to the structural characteristics of the sputtering equipment, the structural characteristics of the film may be different depending on the incidence angle of the sputtering target material to the substrate. In this study, the characteristics of the thin film material according to the scattering angle of the target material and the incidence position of the substrate were studied to find the optimization design rule of the sputtering equipment. To this end, a Si thin film of 1 ㎛ or less was deposited on the Si(100) substrate, and then the microstructure, reflectance, surface roughness, and thin film crystallinity of the thin film formed for each substrate location were investigated. As a result of the study, it was found that as the sputter scattering angle increased and the substrate incident angle decreased, the gap energy along with the surface structure of the thin film increased from 1.47 eV to 1.63 eV, gradually changing to a non-conductive tendency.

Hydrogen-Dependent Catalytic Growth of Amorphous-Phase Silicon Thin-Films by Hot-Wire Chemical Vapor Deposition (HWCVD를 이용한 Amorphous Si 박막 증착공정에서 수소량에 따른 박막성장 특성)

  • Park, Seungil;Ji, Hyung Yong;Kim, MyeongJun;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • We investigated the growth mechanism of amorphous-phase Si thin films in order to improve the film characteristics and circumvent photo-degradation effects by implementation of hot-wire chemical vapor deposition. Amorphous silicon thin films grown in a silane/hydrogen mixture can be decomposed by a resistive heat filament. The structural properties were observed by Raman spectroscopy, FTIR, SEM, and TEM. The electrical properties of the films were measured by photo-conductivity, dark-conductivity, and photo-sensitivity. The contents of Si-H and $Si-H_n$ bonds were measured to be 19.79 and 9.96% respectively, at a hydrogen flow rate of 5.5 sccm, respectively. The thin film has photo-sensitivity of $2.2{\times}10^5$ without a crystalline volume fraction. The catalyst behavior of the hot-wire to decompose the chemical precursors by an electron tunneling effect depends strongly on the hydrogen mixture rate and an amorphous Si thin film is formed from atomic relaxation.