• 제목/요약/키워드: Thin film photovoltaic cells

검색결과 164건 처리시간 0.021초

UVO 처리에 따른 NiOx 박막 및 페로브스카이트 태양전지 셀 특성 변화 (Effect of UVO Treatment on Optical and Electrical Properties of NiOx Thin Film and Perovskite Solar Cells)

  • 조수진;황재근;편도원;정석현;이솔희;이원규;황지성;최영호;김동환
    • Current Photovoltaic Research
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2024
  • Perovskite solar cells have exhibited a remarkable increase in efficiency from an initial 3.8% to 26.1%, marking a significant advancement. However, challenges persist in the commercialization of perovskite solar cells due to their low stability with respect to humidity, light exposure, and temperature. Moreover, the instability of the organic charge transport layer underscores the need for exploring inorganic alternatives. In the manufacturing process of the perovskite solar cells' oxide charge transport layer, ultraviolet-ozone (UVO) treatment is commonly applied to enhance the wettability of the perovskite solution. The UVO treatment on metal oxides has proven effective in suppressing surface oxygen vacancies and removing surface organic contaminants. This study focused on the characterization of nickel oxide as the hole transport material in perovskite solar cells, specifically investigating the impact of UVO treatment on film properties. Through this analysis, changes induced by the UVO treatment were observed, and consequent alterations in the device characteristics were identified.

스퍼터링 공정 조건이 산화 구리 박막 특성에 미치는 영향 (Influence of Sputtering Conditions on Properties of Copper Oxide Thin Films)

  • 조재유;허재영
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.15-19
    • /
    • 2017
  • The fossil fuel power consumption generates $CO_2$, which causes the problems such as global warming. Also, the increase in energy consumption has accelerated the depletion of the fossil fuels, and renewable energy is attracting attention. Among the renewable energies, the solar energy gets a lot of attention as the infinite clean energy source. But, the supply level of solar cell is insignificant due to high cost of generation of electric power in comparison with fossil fuels. Thus several researchers are recently doing the research on ultra-low-cost solar cells. Also, $Cu_2O$ is one of the applied materials as an absorption layer in ultra-low-cost solar cells. Cuprous oxide ($Cu_2O$) is highly desirable semiconductor oxide for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and a high absorption coefficient that absorbs visible light of wavelengths up to 650 nm. In addition, $Cu_2O$ has several advantages such as non-toxicity, low cost and can be prepared with simple and cheap methods on large scale. In this work, we fabricated the $Cu_2O$ thin films by reactive sputtering method. The films were deposited with a Cu target with variable parameters such as substrate temperature, rf-power, and annealing condition. Finally, we confirmed the structural properties of thin films by XRD and SEM.

열처리 시 S/Se 분말 비율에 따른 Cu2ZnSnSe4 (CZTSSe) 박막의 합성 및 특성 평가 (Studies on Effect of S/Se Ratio on the Properties of Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Films by Sulfo-Selenization of Stacked Precursor Thin Films)

  • 강명길;;홍창우;김진혁
    • Current Photovoltaic Research
    • /
    • 제2권4호
    • /
    • pp.177-181
    • /
    • 2014
  • $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) absorber thin films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu precursor thin films. The Zn-Sn-Cu precursor thin films were sulfo-selenized inside a graphite box containing S and Se powder using rapid thermal processing furnace at $540^{\circ}C$ in Ar atmosphere with pre-treatment at $300^{\circ}C$. The effect of different S/Se ratio on the structural, compositional, morphological and electrical properties of the CZTSSe thin films were studied using XRD (X-ray diffraction), XRF (X-ray fluorescence analysis), FE-SEM (field-emission scanning electron microscopy), respectively. The XRD, FE-SEM, XRF results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the S/Se composition ratio. In particular, the CZTS thin film solar cells with S/(S+Se)=0.25 shows best conversion efficiency of 4.6% ($V_{oc}$ : 348 mV, $J_{sc}$ : $26.71mA/cm^2$, FF : 50%, and active area : $0.31cm^2$). Further detailed analysis and discussion for effect of S/Se composition ratio on the properties CZTSSe thin films will be discussed.

Improving Device Efficiency for n-i-p Type Solar Cells with Various Optimized Active Layers

  • Iftiquar, Sk Md;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.70-73
    • /
    • 2017
  • We investigated n-i-p type single junction hydrogenated amorphous silicon oxide solar cells. These cells were without front surface texture or back reflector. Maximum power point efficiency of these cells showed that an optimized device structure is needed to get the best device output. This depends on the thickness and defect density ($N_d$) of the active layer. A typical 10% photovoltaic device conversion efficiency was obtained with a $N_d=8.86{\times}10^{15}cm^{-3}$ defect density and 630 nm active layer thickness. Our investigation suggests a correlation between defect density and active layer thickness to device efficiency. We found that amorphous silicon solar cell efficiency can be improved to well above 10%.

Cu(InGa)Se$_2$ 박막의 성장온도에 따른 태양전지의 광전특성 분석 (Photovoltaic Properties of Solar Cells with Deposition Temperature of Cu(InGa)Se$_2$ Films)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.330-333
    • /
    • 2002
  • The substrate temperature is an important parameter in thin film deposition process. In this paper the effects of the substrate temperature on the properties of CuIn0.75Ga0.25Se2(CIGS) thin films are reported. Structure, surface morphology and optical properties of CIGS thin films deposited at various substrate temperatures have been investigated using a number of analysis techniques. X-ray diffraction (XRD) analysis shows that CIGS films exhibit a strong <112> preferred orientation. As expected, at higher substrate temperatures the films displayed a higher degree of crystallinity. The <112> peak was also enhanced and other CIGS peaks appeared simultaneously These results were supported by experimental work using Raman spectroscopy. The Raman spectra of the as-grown CIGS thin films show only the Al mode peak. The intensity of this peak was enhanced at higher deposition temperatures. Scanning electron microscopy (SEM) results revealed very small grains in films fabricated at 48$0^{\circ}C$ substrate temperature. When the substrate temperature was increased the average grain size also increased together with a reduction in the number and size of the voids. The deposition temperature also had a significant influence on the transmission spectra.

  • PDF

Photonic Crystal Effect of Nano-Patterned PEDOT:PSS Layer and Its Application to Absorption Enhancement of ZnPc Thin Films

  • Han, Ji-Young;Ryu, Il-Whan;Park, Da-Som;Kwon, Hye-Min;Yim, Sang-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.252-252
    • /
    • 2012
  • It is widely accepted that short exciton diffusion lengths of organic semiconductors with respect to the film thickness limit the charge (hole and electron) separation before excitons recombination in organic photovoltaic (OPV) cells. Therefore the efficient absorption of incident light within the thin active organic layer is of great importance to improve the power conversion efficiency (PCE) of the cells. In this work, we fabricated 2-dimensionally (2D) nano-patterned poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOST:PSS) layers using capillary phenomenon and nano-imprinting technology at the scale of several hundred nanometers. This 2D nano-patterned PEDOT:PSS layer exerted photonic crystal effect such as redirection of light paths and variation of light intensity at specified wavelengths. It is also expected that the consequently alternated light pass lengths and intensities change the absorption properties of zinc phthalocyanine (ZnPc) thin films grown on top of the nano-patterned PEDOT:PSS layer. The influence of conductivity and thickness of the PEDOT:PSS layer on the absorption properties of ZnPc thin films were also investigated.

  • PDF

실리콘 태양전지의 기술현황 및 전망 (Technology Trends and Prospects of Silicon Solar Cells)

  • 박철민;조재현;이영석;박진주;주민규;이윤정;이준신
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.11-16
    • /
    • 2013
  • The current solar cell industry is experiencing a temporary plateau due to a sluggish economy and oversupply. It is expected that the solar industry can see similar growth to that of the recent past by overcoming the current situation, as there is growing demand globally for solar energy. The current situation led to restructuring of the world's solar industry, and domestic firms will need to have competitiveness through strategic approaches and proprietary technology to survive in the global solar market. Crystalline and amorphous silicon based solar cells have led the solar industry and occupied half or more of the market thus far. They will do so in the future PV market as well by playing a pivotal role in the solar industry. In this paper, the current status and prospects of silicon based solar cells, from materials to comprehensive and high efficiency technology that can emerge in the future, are discussed.

고효율 태양전지모듈의 성능측정 방법 (Performance Measurement Method of Several Types of Photovoltaic Module Depending on Efficiency)

  • 김경수;강기환;유권종;윤순길
    • 한국태양에너지학회 논문집
    • /
    • 제31권1호
    • /
    • pp.93-99
    • /
    • 2011
  • To guarantee more exact maximum power of solar cell module, it is absolutely required to have performance characteristics of various solar cells. Today, there are many types of solar simulator for large area measurement. But it is very opaque how to select the best one for various solar cell module like crystalline silicon solar cell, high efficiency solar cell, amorphous silicon thin film solar cell, CdTe and CIGS solar cell module. So, in this paper 4 types of photovoltaic module were selected to compare the electrical characteristics by changing light pulse duration time and voltage scan direction. Light pulse duration time was varied from 10msec to 800msec. And two types of voltage scan directions, Voc->Isc and Isc->Voc were selected. From this results, optimum measuring condition was suggested and electrical variation was analysed for each types of solar cell module. The detail description is specified as the following paper.

BIPV를 활용한 건축물 디자인 계획에 관한 연구 (A Study on the Architectural Design Plans Using BIPV)

  • 전근식;류수훈
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권3호
    • /
    • pp.5-13
    • /
    • 2012
  • In this study, features and design effects of PV(Photovoltaic) modules were classified to help the installation of BIPV(Building Integrated Photovoltaic) In addition, through domestic and international trends and cases survey, installation method was organized and applicable range of efficiency and design from First-generation solar cells to the third-generation solar cell was classified. Frist, Crystalline Solar cell module of first-generation is appropriate for the wall type, roof, louver, shading and etc. It has superiority of technology and price stability and can be achieved by a variety of aesthetic effects. Second, Dye-Sensitized Solar Cell of Thin Film solar cell can express a variety of colors, adjust light transmittance and maximize the aesthetic splendor. It is appropriate for the wall type, window type, curtain wall type and etc. Also, see-through type solar cell can provide comforts cause of free flow of light. And it is advantageous from economic due to adjust the indoor temperature. It is appropriate for the atrium type, curtain wall type, window type and etc.

Conventional and Inverted Photovoltaic Cells Fabricated Using New Conjugated Polymer Comprising Fluorinated Benzotriazole and Benzodithiophene Derivative

  • Kim, Ji-Hoon;Song, Chang Eun;Kang, In-Nam;Shin, Won Suk;Zhang, Zhi-Guo;Li, Yongfang;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1356-1364
    • /
    • 2014
  • A new conjugated copolymer, poly{4,8-bis(triisopropylsilylethynyl)benzo[1,2-b:4,5-b']dithiophene-alt-4,7- bis(5-thiophen-2-yl)-5,6-difluoro-2-(heptadecan-9-yl)-2H-benzo[d][1,2,3]triazole} (PTIPSBDT-DFDTBTz), is synthesized by Stille coupling polycondensation. The synthesized polymer has a band gap energy of 1.9 eV, and it absorbs light in the range 300-610 nm. The hole mobility of a solution-processed organic thin-film transistor fabricated using PTIPSBDT-DFDTBTz is $3.8{\times}10^{-3}cm^2V^{-1}s^{-1}$. Bulk heterojunction photovoltaic cells are fabricated, with a conventional device structure of ITO/PEDOT:PSS/polymer:$PC_{71}BM$/Ca/Al ($PC_{71}BM$ = [6,6]-phenyl-$C_{71}$-butyric acid methyl ester); the device shows a power conversion efficiency (PCE) of 2.86% with an open-circuit voltage ($V_{oc}$) of 0.85 V, a short-circuit current density ($J_{sc}$) of 7.60 mA $cm^{-2}$, and a fill factor (FF) of 0.44. Inverted photovoltaic cells with the structure ITO/ethoxylated polyethlyenimine/ polymer:$PC_{71}BM/MoO_3$/Ag are also fabricated; the device exhibits a maximum PCE of 2.92%, with a $V_{oc}$ of 0.89 V, a $J_{sc}$ of 6.81 mA $cm^{-2}$, and an FF of 0.48.