• 제목/요약/키워드: Thin film deposition

검색결과 2,982건 처리시간 0.031초

Optical Constants and Dispersion Parameters of CdS Thin Film Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권4호
    • /
    • pp.196-199
    • /
    • 2012
  • CdS thin film was prepared on glass substrate by chemical bath deposition in an alkaline solution. The optical properties of CdS thin film were investigated using spectroscopic ellipsometry. The real (${\varepsilon}_1$) and imaginary (${\varepsilon}_2$) parts of the complex dielectric function ${\varepsilon}(E)={\varepsilon}_1(E)+i{\varepsilon}_2(E)$, the refractive index n(E), and the extinction coefficient k(E) of CdS thin film were obtained from spectroscopic ellipsometry. The normal-incidence reflectivity R(E) and absorption coefficient ${\alpha}(E)$ of CdS thin film were obtained using the refractive index and extinction coefficient. The critical points $E_0$ and $E_1$ of CdS thin film were shown in spectra of the dielectric function and optical constants of refractive index, extinction coefficient, normal-incidence reflectivity, and absorption coefficient. The dispersion of refractive index was analyzed by the Wemple-DiDomenico single-oscillator model.

C축으로 배향된 $LiNbO_3$ 박막의 PLD 증착 조건 연구 (Fabrication of c-axis Oriented $LiNbO_3$ Thin Film by PLD)

  • 김현준;김달영;김상종;강종윤;성만영;윤석진;김현재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.397-398
    • /
    • 2005
  • Ferroelectric Lithium niobate ($LiNbO_3$) thin films are fabricated on $Al_2O_3$(0001) substrate using Pulsed Laser Deposition (PLD). The various deposition conditions such as substrate temperature, oxygen pressure, and post annealing condition are investigated to deposite c-axis oriented $LiNbO_3$ thin films. Highly c-axis oriented thin films are obtained under the conditions of working pressure of 100 mTorr, deposition for 10 min at $450^{\circ}C$, and in-situ annealing for 40 min. The $LiNbO_3$ thin films are chemically etched after electric poling and the etched configurations are studied by scanning electron microscope (SEM).

  • PDF

OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구 (Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED)

  • 조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.

증착 및 열처리온도에 따른 SCT 박막의 구조적인 특성 (Structural Properties of SCT Thin Film with Deposition and Annealing Temperature)

  • 김진사
    • 반도체디스플레이기술학회지
    • /
    • 제6권3호
    • /
    • pp.41-45
    • /
    • 2007
  • The (SrCa)$TiO_3$(SCT) thin films were deposited on Pt-coated electrode(Pt/TiN/$SiO_2$/Si) using RF sputtering method according to the deposition condition. The crystallinity of SCT thin films were increased with increase of deposition temperature in the temperature range of $100{\sim}500[^{\circ}C]$. The optimum conditions of RF power and Ar/$O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about $18.75[{\AA}/min]$ at the optimum condition. The composition of SCT thin films deposited on Si substrate is close to stoichiometry (1.081 in A/B ratio). The maximum dielectric constant of SCT thin film was obtained by annealing at $600[^{\circ}C]$.

  • PDF

에어로졸 증착법에 의한 $Al_2O_3$ 박막의 증착 및 특성 평가 (Characterization of $Al_2O_3$, Thin Film Deposited by Aerosol Deposition Method)

  • 조현민;김형준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.24-24
    • /
    • 2007
  • Aerosol deposition(AD) method is a emerging technology for the room temperature deposition of the dielectric thin films with high quality. In this study, $Al_2O_3$ thin films were deposited by aerosol deposition method directly from raw powders. To get uniform and smooth film surface, Process parameters such as gas consumption rate, nozzle-substrate distance and vibration speed were optimized. From XRD results, $Al_2O_3$ thin films have the same crystal structures with starting powders. $Al_2O_3$ thin films also showed dense microstructure. Electrical properties of the thin films were also investigated.

  • PDF

박막 태양전지용 투명 전극을 위한 Ga 도핑된 ZnO의 증착 온도에 따른 구조 및 전기 특성 변화 (Effect of Deposition Temperature on Structural and Electrical Properties of Ga-Doped ZnO for Transparent Electrode of Thin Film Solar Cells)

  • 손창식
    • 한국재료학회지
    • /
    • 제21권3호
    • /
    • pp.144-148
    • /
    • 2011
  • We have investigated the structural and optical properties of Ga-doped ZnO (GZO) thin films deposited by RF magnetron sputtering at various deposition temperatures from 100 to $500^{\circ}C$. All the GZO thin films are grown as a hexagonal wurtzite phase with highly c-axis preferred parameter. The structural and electrical properties are strongly related to deposition temperature. The grain size increases with the increasing deposition temperature up to $400^{\circ}C$ and then decreases at $500^{\circ}C$. The dependence of grain size on the deposition temperature results from the variation of thermal activation energy. The resistivity of GZO thin film decreases with the increasing deposition temperature up to $300^{\circ}C$ and then decreases up to $500^{\circ}C$. GZO thin film shows the lowest resistivity of $4.3{\times}10^{-4}\;{\Omega}cm$ and highest electron concentration of $1.0{\times}10^{21}\;cm^{-3}$ at $300^{\circ}C$. The mobility of GZO thin films increases with the increasing deposition temperature up to $400^{\circ}C$ and then decreases at $500^{\circ}C$. GZO thin film shows the highest resistivity of 14.1 $cm^2/Vs$. The transmittance of GZO thin films in the visible range is above 87% at all the deposition temperatures. GZO is a feasible transparent electrode for the application to the transparent electrode of thin film solar cells.

유기반도체 박막증착을 위한 선형증착원의 유체유동해석 (Analysis of Fluid Flow in the Linear Cell Source for Organic Semiconductor Thin Film Deposition)

  • 곽인철;양영수;최범호;김영미
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.74-80
    • /
    • 2009
  • This paper presents a study on fluid flow analysis of organic semiconductor thin film deposition process using the computational numerical method. In the production process, the thickness of deposited organic thin film depends on distribution of nozzle size in the linear cell system, so we analyze to decide the optimal nozzle system for uniform thickness of organic thin film. The results of deposited thickness of thin film by numerical analysis are in good agreement with those of the experimental measurements.

구리 박막 제조중 증착 중단시 박막 결정립 크기 변화가 인장응력 방향으로의 응력 이동에 미치는 영향 (The Effect of Grain Size on the Stress Shift toward Tensile Side by Deposition Interruptions in Copper Thin Films)

  • 이세리;오승근;김영만
    • 한국표면공학회지
    • /
    • 제47권6호
    • /
    • pp.303-310
    • /
    • 2014
  • In this study, the average in-situ stress in metallic thin film was measured during deposition of the Cu thin films on the Si(111) wafer and then the phenomenon of stress shift by the interruption of deposition was measured using Cu thin films. We have observed the stress shift in accordance with changing amount of atom's movement between the surface and grain boundary through altering the grain size of the Cu thin film with variety of parameters. The grain size is known to be affected on the deposition rate, film thickness and deposition temperature. As a experimental results, the these parameters was not adequate to explain stress shift because these parameters affect directly on the amount of atom's movement between the surface and grain boundary as well as the grain size. Thus, we have observed the stress shift toward tensile side in accordance with the grain size changing through the interlayer deposition. From an experiment with inserting interlayer before deposit Cu, in thin film which has big grain size with high roughness, amount of stress movement is higher along direction of tensile stress after deposition that means, after deposition process, driving force of atoms moving in grain boundary and on the surface of the film is relatively higher than before.

Analysis of Bi-Superconducting Thin Films Fabricated by Using the Layer by Layer Deposition and Evaporation Deposition Method

  • Yang, Seung-Ho;Cheon, Min-Woo;Lee, Ho-Shik;Park, Yong-Pil
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.517-520
    • /
    • 2007
  • The BSCCO thin film fabricated by using the layer by layer deposition method was compared with the BSCCO thin film fabricated by using the evaporation method. Reevaporation in the form of Bi atoms or $Bi_2O_3$molecules easily bring out the deficiency of Bi atoms in thin film due to the long sputtering time of the layer by layer deposition. On the other hand, the respective atom numbers corresponding to BSCCO phase is concurrently supplied on the film surface in the evaporation deposition process and leads to BSCCO phase formation. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF