• 제목/요약/키워드: Thin film composite

검색결과 277건 처리시간 0.022초

Preparation and Characterization of Sol-Gel Derived $SiO_2-TiO_2$ -PDMS Composite Films

  • 황진명;여창선;김유항
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권12호
    • /
    • pp.1366-1370
    • /
    • 2001
  • Thin films of the SiO2-TiO2-PDMS composite material have been prepared by the sol-gel dip coating method. Acid catalyzed solutions of tetraethoxy silane (TEOS) and polydimethyl siloxane (PDMS) mixed with titanium isopropoxide Ti(OiPr) were used as precursors. The optical and structural properties of the organically modified 70SiO2-30TiO2 composite films have been investigated with Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Spectroscopy (UV-Vis), Differential Thermal Analysis (DTA) and prism coupling technique. The films coated on the soda-lime-silicate glass exhibit 450-750 nm thickness, 1.56-1.68 refractive index and 88-94% transmittance depending on the experimental parameters such as amount of PDMS, thermal treatment and heating rate. The optical loss of prepared composite film was measured to be about 0.34 dB/cm.

압전필름센서 신호를 이용한 Gr/Ep 복합재 적층판의 고속충격 손상탐지 (High-Velocity Impact Damage Detection of Gr/Ep Composite Laminates Using Piezoelectric Thin Film Sensor Signals)

  • 김진원;김인걸
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.13-16
    • /
    • 2005
  • The mechanical properties of composite materials may degrade severely in the presence of damage. Especially, the high-velocity impact such as bird strike, a hailstorm, and a small piece of tire or stone during high taxing, can cause sever damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single technique or any conventional methods. In this paper, the PYDF(polyvinylidene fluoride) film sensors and strain gages were used for monitoring impact damage initiation and propagation in composite laminates. The WT(wavelet transform) and STFT(short time Fourier transform) are used to decompose the sensor signals. A ultrasonic C-scan and a digital microscope are also used to examine the extent of the damage in each case. This research demonstrate how various sensing techniques, PVDF sensor in particular, can be used to characterize high-velocity impact damage in advanced composites.

  • PDF

두께 변화에 따른 BST 박막의 특성 (The Properties of BST Thin Films by Thickness)

  • 홍경진;민용기;조재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.455-458
    • /
    • 2001
  • The thin films of high pemitivity in ferroelectric materials using a capacitor are applied to DRAMs and FRAMs. (Ba, Sr)$TiO_3$ thin films as ferroelectric materials were prepared by the sol-gel method and made by spin-coating on the Pt/Ti/$SiO_2/Si$ substrate at 4,000 [rpm] for 10 seconds. The devices of BST thin films to composite $(Ba_{0.7},Sr_{0.3})TiO_3$ were fabricated by changing of the depositing layer number on $Pt/Ti/SiO_2/Si$ substrate. The thin film capacitor to be ferroelectric devices was investigated by structural and electrical properties. The thickness of BST thin films at each coating numbers 3, 4 and 5 times was $2500[\AA]$, $3500[\AA]$, $3800[\AA]$. The dielectric factor of thin film when the coating numbers were 3, 4 and 5 times was 190, 400 and 460 on frequency l[MHz]. The dielectric loss of BST thin film was linearly increased by increasing of the specimen area.

  • PDF

두께 변화에 따른 BST 박막의 특성 (The Properties of BST Thin Films by Thickness)

  • 홍경진;민용기;조재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.455-458
    • /
    • 2001
  • The thin films of high permitivity in ferroelectric materials using a capacitor are applied to DRAMs and FRAMs. (Ba, Sr)TiO$_3$ thin films as ferroelectric materials were prepared by the sol-gel method and made by spin-coating on the Pt/Ti/SiO$_2$/Si substrate at 4,700 [rpm] for 10 seconds. The devices of BST thin films to composite (Ba$\_$0.7/Sr$\_$0.3/)TiO$_3$ were fabricated by changing of the depositing layer number on Pt/Ti/SiO$_2$/Si substrate. The thin film capacitor to be ferroelectric devices was investigated by structural and electrical properties. The thickness of BST thin films at each coating numbers 3, 4 and 5 times was 2500[${\AA}$], 3500[${\AA}$], 3800[${\AA}$]. The dielectric factor of thin film when the coating numbers were 3, 4 and 5 times was 190, 400 and 460 on frequency 1[MHz]. The dielectric loss of BST thin film was linearly increased by increasing of the specimen area.

  • PDF

Thin composite film passivation through RF sputtering method For Large-sized Organic Display Devices

  • Lee, Joo-Won;Kim, Young-Min;Park, Jung-Soo;Bea, Sung-Jin;Kim, Na-Rae;Kim, Jai-Kyeong;Jang, Jin;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1480-1483
    • /
    • 2005
  • Transparent thin composite films (TCFs) were deposited on OLED devices by means of RF sputtering method and their passivation-properties were evaluated by comparing to the e-beam evaporating method. This composite film formed by mixed ratio of MgO (3wt %): $SiO_2$ (1wt %) was developed from pallet as a source of e-beam evaporator to 6-inch size target for sputtering in order to apply for large-sized organic display devices. Water Vapor Transmission Rates (WVTR) of the deposited films were measured as a function of thickness to assess the effectiveness of this film as a passivation layer and it applied to real devices. From this study, we can confirm that the passivation layer formed by TCFs using RF sputtering method sufficiently shows the potentiality of application to passivation layer for organic display devices.

  • PDF

이온 질화층이 TiN 박막의 밀착성에 미치는 영향 (The Adhesion of TiN Coatings on Plasma-nitrided Steel)

  • 고광만;김홍우;김문일
    • 열처리공학회지
    • /
    • 제4권4호
    • /
    • pp.1-14
    • /
    • 1991
  • In PECVD(Plasma-Enhanced Chemical Vapor Deposition) process, titanium nitride is thin and its adhesion is poor for the protective coatings. Therefore it has been studied that intermediate layer forms between substrate and TiN thin film. Using R.F. plasma nitriding, nitride layer was first formed, then TiN thin film coated by PECVD. The chemical composition of the coatings has been characterized using AES, EDS and their crystallographic structure by means of XRD. Mechanical properties such as microhardness and film adhesion have also been determined by vickers hardness test, scratch test and indentation test. As a result, there was no difference in chemical composition and structure between the TiN deposition only and the composite of TiN deposition on nitrided steel. It was found that nitrided substrate increased the hardness of TiN coatings and was beneficial in preventing the plastic deformation in the substrate. Therefore the effective load bearing capacity of the TiN coatings on nitrided steel was increased and their adhesion was improved as well. According to the results of this study, the processes that lead to the formation of composite layers characterized by good working properties, i.e., high microhardness, adhesion and resistance to deformation.

  • PDF

In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing

  • Ryu, Donghyeon;Loh, Kenneth J.;Ireland, Robert;Karimzada, Mohammad;Yaghmaie, Frank;Gusman, Andrea M.
    • Smart Structures and Systems
    • /
    • 제8권5호
    • /
    • pp.471-486
    • /
    • 2011
  • Various types of strain sensors have been developed and widely used in the field for monitoring the mechanical deformation of structures. However, conventional strain sensors are not suited for measuring large strains associated with impact damage and local crack propagation. In addition, strain sensors are resistive-type transducers, which mean that the sensors require an external electrical or power source. In this study, a gold nanoparticle (GNP)-based polymer composite is proposed for large strain sensing. Fabrication of the composites relies on a novel and simple in situ GNP reduction technique that is performed directly within the elastomeric poly(dimethyl siloxane) (PDMS) matrix. First, the reducing and stabilizing capacities of PDMS constituents and mixtures are evaluated via visual observation, ultraviolet-visible (UV-Vis) spectroscopy, and transmission electron microscopy. The large strain sensing capacity of the GNP-PDMS thin film is then validated by correlating changes in thin film optical properties (e.g., maximum UV-Vis light absorption) with applied tensile strains. Also, the composite's strain sensing performance (e.g., sensitivity and sensing range) is also characterized with respect to gold chloride concentrations within the PDMS mixture.

Preparation of SiO2-CuO-CeO2 Composite Powders and Its Thin Film Templated with Oxalic Acid

  • Son, Boyoung;Jung, Miewon
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.526-530
    • /
    • 2012
  • Silica-based ceramic-matrix composites have shown promise as advanced materials for many applications such as chemical catalysts, ceramics, pharmaceuticals, and electronics. $SiO_2$-CuO-$CeO_2$ multi-component powders and their thin film, using an oxalic acid template as a chelating agent, have larger surface areas and more uniform pore size distribution than those of inorganic acid catalysts. $SiO_2$-CuO-$CeO_2$ composite powders were synthesized using tetraethylorthosilicate, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate with oxalic acid as template or pore-forming agent. The process of thermal evolution, the phase composition, and the surface morphology of these powders were monitored by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectrometry (EDXS). The mesoporous property of the powders was observed by Brunner-Emmett-Teller surface (BET) analysis. The improved surface area of this powder template with oxalic acid was $371.4m^2/g$. This multi-component thin film on stainless-steel was prepared by sol-gel dip coating with no cracks.

Molecular Aligning Properties of a Dielectric Layer of Polymer-Ceramic Nanocomposite for Organic Thin-Film Transistors

  • Kim, Chi-Hwan;Kim, Sung-Jin;Yu, Chang-Jae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1200-1203
    • /
    • 2004
  • We investigated the molecular aligning capability of a polymer layer containing ceramic nanoparticles which can be used as a gate insulator of organic thin-film transistors (OTFTs). Because of the enhanced dielectric properties arising from the nanoparticles and molecular aligning properties of the polymer, the composite layer provides excellent mobility characteristics of the OTFTs.

  • PDF

Organic Passivation Material-Polyvinyl Alcohol (PVA)/Layered Silicate Nanocomposite-for Organic Thin Film Transistor

  • Ahn, Taek;Suk, Hye-Jung;Yi, Mi-Hye
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1539-1542
    • /
    • 2007
  • We have synthesized novel organic passivation materials to protect organic thin film transistors (OTFTs) from $H_2O$ and $O_2$ using polyvinyl alcohol (PVA)/layered silicate (SWN) nano composite system. Up to 3 wt% of layered silicate to PVA, very homogeneous nanocomposite solution was prepared.

  • PDF