• Title/Summary/Keyword: Thin film batteries

Search Result 63, Processing Time 0.026 seconds

Fabrication and electrochemical characterization of amorphous vanadium oxide thin films for thin film micro-battery by reactive r.f. sputtering (반응성 r.f. 스퍼터링에 의한 마이크로 박막 전지용 산화바나듐 박막의 제작 및 전기화학적 특성 평가)

  • 전은정;신영화;남상철;윤영수;조원일
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.42-47
    • /
    • 2000
  • The amorphous vanadium oxide thin films for thin-film rechargeable lithium batteries were fabricated by r.f. reactive sputtering at room temperature. As the experimental parameter, oxygen partial pressure was varied during sputtering. At high oxygen partial pressures(>30%), the as-deposited films, constant current charge/discharge characteristics were carried out in 1M $LiPF_6$, EC:DMC+1:1 liquid electrolyte using lithium metal as anode. The specific capacity of amorphous $V_2O_5$ after 200cycles of operation at room temperature was higher compared to crystalline $V_2O_5$. The amorphous vanadium oxide thin film and crystalline film showed about 60$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$ and about 38$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$, respectively. These results suggest that the battery capacity of the thin film vanadium oxide cathode strongly depends on the crystallinity.

  • PDF

Synthesis of Cobalt Oxide Film by Thermal Decomposition for Potential Various Applications

  • Han, Seong Ho;Park, Bo Keun;Son, Seong Uk;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.365.1-365.1
    • /
    • 2014
  • Cobalt oxide has excellent various properties such as high catalytic activity, antiferromagnetism, and electrochromism. So cobalt oxides offer a great potential for their applications in the various areas such as optical gas sensor, catalysts for oxidation reaction, electrochromic devices, high temperature solar selective absorbers, magnetic materials, pigment for glasses and ceramics, and negative electrodes for lithium-ion batteries. We have synthesized novel cobalt complexes by simple reaction of cobalt bistrimethylsilylamide as a starting material with a lot of conventional ligands as potential cobalt oxide precursors. The studies include the facile preparation, structural characterization, and spectroscopic analysis of the new precursors. We are making efforts to grow cobalt oxide thin films using cobalt complexes newly synthesized in this study using deposition techniques.

  • PDF

Effects of Fe layer on Li insertion/extraction Reactions of Fe/Si Multilayer thin Film Anodes for Lithium Rechargeable Batteries

  • Kim, Tae-Yeon;Kim, Jae-Bum;Ahn, Hyo-Jun;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.193-197
    • /
    • 2011
  • The influences of the thickness and microstructure of Fe layer on the electrochemical performances of Fe/Si multilayer thin film anodes were investigated. The Fe/Si multilayer films were prepared by electron beam evaporation, in which Fe layer was deposited with/without simultaneous bombardment of Ar ion. The kinetics of Li insertion/extraction reactions in the early stage are slowed down with increasing the thickness of Fe layer, but such a slowdown seems to be negligible for thin Fe layers less than about $500{\AA}$. When the Fe layer was deposited with ion bombardment, even the $300{\AA}$ thick Fe layer significantly suppress Li diffusion through the Fe layer. This is attributed to the dense microstructure of Fe layer, induced by ion beam assisted deposition (IBAD). It appears that the Fe/Si multilayer films prepared with IBAD show good cyclability compared to the film deposited without IBAD.

Electrodeposited Porous Tungsten Oxides as Anode Materials for Lithium Secondary Batteries

  • Lee, Du-Young;Choi, Woo-Sung;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.161-169
    • /
    • 2016
  • Porous tungsten oxide thin films were prepared by electrodeposition and tested as anodes of lithium secondary batteries. The synthesized films were composed of nanoparticles of 60-140 nm size, with porosities of 30-40 %. Increasing the temperature turned out to be a more effective approach to introduce porosity in the structure than increasing the electrolyte viscosity. The assessment of the synthesized films as anodes of lithium secondary batteries revealed a much higher initial discharge capacity for the porous than the dense samples. The discharge capacity retention significantly increased with increasing porosity and was further enhanced by heat treatment. In particular, a thin film composed of particles of about 140 nm in size and with a porosity of 40 % exhibited an initial discharge capacity higher than 600 mAh/g and a remaining capacity above 300 mAh/g after 30 cycles. Following heat treatment, the remaining capacity of this sample after 30 cycles increased to about 500 mA h/g.

Effect of Doping on the Ionic Conductivity of Li$_2$Po$_{4-x}$N$_{x}$ thin Film (Li$_2$Po$_{4-x}$N$_{x}$ 박막의 이온전도도에 미치는 Ti 첨가)

  • 이재혁;이유기;박종완
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.255-261
    • /
    • 1997
  • Thin film batteries can be used as a micro power source for electronic in which minute power is needed. In this study, lithium phosphorous oxynitride(LIPON) thin films were deposited as an eletrolyte for lithium ion batteries using RF magentron sputtering of lithium phosphate in N2. Ti was also added into the LIPON films as a second network former to enhance the ioinc conductivity of the films. The optimum conditions for LIPON film deposition were sought and the electrolyte with the conductivity of $2.5 \times 10^{-6}$S/cm was obtained at the condition of RF power 4.4 W/$\textrm{cm}^2$, process pressure 10 mtorr and pure nitrogen ambience. Furthermore, the conductivity of LIPON films was increased from $2.5 \times 10^{-6}$S/cm to $8.6 \times 10^{-6}$S/cm by the doping of 2.4at.% Ti. It was also found that by adding Ti to LIPON films, Li content was increased and nitrogen content that reported having the cross-linking effect on LIPON films was also increased as confirmed XPS.

  • PDF

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.