DOI QR코드

DOI QR Code

Effects of Fe layer on Li insertion/extraction Reactions of Fe/Si Multilayer thin Film Anodes for Lithium Rechargeable Batteries

  • Kim, Tae-Yeon (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Kim, Jae-Bum (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Ahn, Hyo-Jun (School of Materials science and engineering, Gyeongsang National University) ;
  • Lee, Sung-Man (Department of Advanced Materials Science and Engineering, Kangwon National University)
  • Received : 2011.11.29
  • Accepted : 2011.12.13
  • Published : 2011.12.31

Abstract

The influences of the thickness and microstructure of Fe layer on the electrochemical performances of Fe/Si multilayer thin film anodes were investigated. The Fe/Si multilayer films were prepared by electron beam evaporation, in which Fe layer was deposited with/without simultaneous bombardment of Ar ion. The kinetics of Li insertion/extraction reactions in the early stage are slowed down with increasing the thickness of Fe layer, but such a slowdown seems to be negligible for thin Fe layers less than about $500{\AA}$. When the Fe layer was deposited with ion bombardment, even the $300{\AA}$ thick Fe layer significantly suppress Li diffusion through the Fe layer. This is attributed to the dense microstructure of Fe layer, induced by ion beam assisted deposition (IBAD). It appears that the Fe/Si multilayer films prepared with IBAD show good cyclability compared to the film deposited without IBAD.

Keywords

References

  1. S.D. Jones and J.R. Akridge, Solid State Ionics, 53, 628 (1992). https://doi.org/10.1016/0167-2738(92)90439-V
  2. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudunry, C.F. Luck and J.D. Robertson, J. Power Sources, 43, 103 (1999).
  3. J.B. Bates, N.J. Dudney, B.J. Neudecker, F.X. hart, H.P. Jun and S.A. Hackney, J. Electrochem. Soc., 147, 59 (2000). https://doi.org/10.1149/1.1393157
  4. B.J. Neudecker, R.A. Zuhr and J.B. Bates, J. Power Sources, 81, 27 (1999). https://doi.org/10.1016/S0378-7753(98)00202-X
  5. J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda and C.D. Evans, Solid State Ionics, 135, 33 (2000). https://doi.org/10.1016/S0167-2738(00)00327-1
  6. J. Lee, H.Y. Lee, S.H. Jeong, H.K. Baik and S.M. Lee, J. Power Sources, 11, 345 (2002).
  7. Y.L. Kim, S.J. Lee, H.K. Baik and S.M. Lee, J. Power Sources, 119, 106 (2003). https://doi.org/10.1016/S0378-7753(03)00134-4
  8. S.J. Lee, H.Y. Lee, H.K. Baik and S.M. Lee, J. Power Sources, 119, 113 (2003). https://doi.org/10.1016/S0378-7753(03)00137-X
  9. S. Ohara, J. Suzuki, K. Sekine and T. Takamura, J. Power Sources, 119, 591 (2003). https://doi.org/10.1016/S0378-7753(03)00301-X
  10. J.P. Maranchi, A.F. Hepp and P.N. Kumta, Electrochem. Solid-State Lett., 6, A198 (2003). https://doi.org/10.1149/1.1596918
  11. Z. Chen, V. Chevrier, L. Christensen and J.R. Dahn, Electrochem. Solid-State Lett., 7, A310 (2004). https://doi.org/10.1149/1.1792262
  12. J.B. Kim, H.Y. Lee, K.S. Lee, S.H. Lim and S.M. Lee, Electrochem. Commun., 5, 544 (2003). https://doi.org/10.1016/S1388-2481(03)00120-6
  13. J.B. Kim, B.S. Jun and S.M. Lee, Electrochim. Acta, 50, 3390 (2005). https://doi.org/10.1016/j.electacta.2004.12.021
  14. E. Kay, S.M. Rossnagel, R.A. Roy and D.S. Yen, in Handbook of Ion Beam Processing Technology; Principles, Deposition, Film Modification and Synthesis, J.J. Cuomo, S.M. Rossnagel and H.R. Kaurfman, Editors, chap. 10, 11, Noyes Publications, Park Ridge, NJ (1989).
  15. B.S. Kang, S.M. Lee, J.S. Kwak, D.S. Yoon and H.K. Baik, J. Electrochem. Soc., 144, 1807 (1997). https://doi.org/10.1149/1.1837684