DOI QR코드

DOI QR Code

Photoelectrochemical Water Oxidation Using ZnO Nanorods Coupled with Cobalt-Based Catalysts

  • Jeon, Tae-Hwa (Department of Energy Science, Kyungpook National University) ;
  • Choi, Sung-Kyu (Department of Physics, Kyungpook National University) ;
  • Jeong, Hye-Won (School of Energy Engineering, Kyungpook National University) ;
  • Kim, Seung-Do (Deptartment of Environmental Science and Biotechnology, Hallym University) ;
  • Park, Hyun-Woong (School of Energy Engineering, Kyungpook National University)
  • Received : 2011.11.29
  • Accepted : 2011.12.13
  • Published : 2011.12.31

Abstract

Photoelectrochemical performances of ZnO electrodes are enhanced by coupling with cobalt-based catalyst (CoPi) in phosphate electrolyte (pH 7). For this study, hexagonal pillar-shaped ZnO nanorods are grown on ZnO electrodes through a chemical bath deposition, onto which CoPi is deposited with different photodeposition times (10-30 min). A scanning electron microscopic study indicates that CoPi deposition does not induce any change of ZnO morphology and an energy-dispersive X-ray spectroscopic analysis shows that inorganic phosphate ions (Pi) exist on ZnO surface. Bare ZnO electrodes generate the current of ca. $0.36mA/cm^2$ at a bias potential of 0.5 V vs. SCE, whereas ZnO/CoPi (deposited for 10 min) has ca. 50%-enhanced current ($0.54mW/cm^2$) under irradiation of AM 1.5G-light ($400mW/cm^2$). The excess loading of CoPi on ZnO results in decrease of photocurrents as compared to bare ZnO likely due to limited electrolyte access to ZnO and/or CoPi-mediated recombination of photogenerated charge carriers. The primary role of CoPi is speculated to trap the photogenerated holes and thereby oxidize water into molecular oxygen via an intervalency cycle among Co(II), Co(III), and Co(IV).

Keywords

References

  1. A.J. Bard and M.A. Fox, Acc. Chem. Res., 28, 141 (1995). https://doi.org/10.1021/ar00051a007
  2. T.R. Cook, D.K. Dogutan and S.Y. Reece, Y. Surendranath, T.S. Teets and D.G. Nocera, Chem. Rev., 110, 6474 (2010). https://doi.org/10.1021/cr100246c
  3. M.G. Walter, E.L. Warren, J.R. Mckone, S.W. Boettcher, Q. Mi, E.A. Santori and N.S. Lewis, Chem. Rev., 110, 6446 (2010). https://doi.org/10.1021/cr1002326
  4. P.H. Borse, H. Jun, S.H. Choi, S.J. Hong and J.S. Lee, Appl. Phys. Lett., 93, 173103 (2008). https://doi.org/10.1063/1.3005557
  5. F.L. Souza, K.P. Lopes, E. Longo and E.R. Leite, Phys. Chem. Chem. Phys., 11, 1215 (2009). https://doi.org/10.1039/b811946e
  6. H. Wang, T. Lindgren, J. He, A. Hagfeldt and S.E. Lindquist, J. Phys. Chem. B, 104, 5486 (2000). https://doi.org/10.1021/jp993098g
  7. W.J. Youngblood, S.H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust and T.E. Mallouk, J. Am. Chem. Soc., 131, 926 (2009). https://doi.org/10.1021/ja809108y
  8. T.H. Jeon, W. Choi and H. Park, Phys. Chem. Chem. Phys., DOI: 10.1039/c1031cp23135a (2011).
  9. A. Bak, W. Choi and H. Park, Appl. Catal. B, 110, 207 (2011). https://doi.org/10.1016/j.apcatb.2011.09.002
  10. K. Sivula, F.L. Formal and M. Graetzel, ChemSusChem, 4, 432 (2011). https://doi.org/10.1002/cssc.201000416
  11. S. Trasatti (1980) Electrodes of conductive metal oxides, Elsevier, New York.
  12. M.W. Kanan and D.G. Nocera, Science, 321, 1072 (2008). https://doi.org/10.1126/science.1162018
  13. M.W. Kanan, Y. Surendranath and D.G. Nocera, Chem. Soc. Rev., 38, 109 (2009). https://doi.org/10.1039/b802885k
  14. J.G. McAlpin, Y. Surendranath, M. Dinca, T.A. Stich, S.A. Stoian, W.H. Casey, D.G. Nocera and R.D. Britt, J. Am. Chem. Soc., 132, 6882 (2010). https://doi.org/10.1021/ja1013344
  15. E.M.P. Steinmiller and K.S. Choi, Proc. Natl. Acad., 106, 20633 (2009). https://doi.org/10.1073/pnas.0910203106
  16. K.J. McDonald and K.S. Choi, Chem. Mat., 23, 1686 (2011). https://doi.org/10.1021/cm1020614
  17. D.K. Zhong, M. Cornuz, K. Sivula, M. Graetzel and D.R. Gamelin, Energy Environ. Sci., 4, 1759 (2011). https://doi.org/10.1039/c1ee01034d
  18. D.K. Zhong and D.R. Gamelin, J. Am. Chem. Soc., 132, 4202 (2010). https://doi.org/10.1021/ja908730h
  19. J.J.H. Pijpers, M.T. Winkler, Y. Surendranath, T. Buonassisi and D.G. Nocera, Proc. Nat. Acad. Sci., 108, 10056 (2011). https://doi.org/10.1073/pnas.1106545108
  20. J.A. Seabold and K.S. Choi, Chem. Mater., 23, 1105 (2011). https://doi.org/10.1021/cm1019469
  21. E.R. Young, R. Costi, S. Paydavosi, D.G. Nocera and V. Bulovic, Energy Environ. Sci., 2058 (2011).
  22. J.C. Johnson, K.P. Knutsen, H.Q. Yan, M. Law, Y.F. Zhang, P.D. Yang and R.J. Saykally, Nano Lett., 4, 197 (2004). https://doi.org/10.1021/nl034780w
  23. L.L. Yang, Q.X. Zhao and M. Willander, J. Alloy. Compd., 469, 623 (2009). https://doi.org/10.1016/j.jallcom.2008.08.002
  24. M. Barroso, A.J. Cowan, S.R. Pendlebury, M. Gratzel, D.R. Klug and J.R. Durrant, J. Am. Chem. Soc., 133, 14868 (2011). https://doi.org/10.1021/ja205325v
  25. S.R. Pendlebury, M. Barroso, A.J. Cowan, K. Sivula, J. Tang, M. Gratzel, D.R. Klug and J.R. Durrant, Chem. Commun., 47, 716 (2011). https://doi.org/10.1039/c0cc03627g

Cited by

  1. Applications of Scanning Electrochemical Microscopy (SECM) Coupled to Atomic Force Microscopy with Sub-Micrometer Spatial Resolution to the Development and Discovery of Electrocatalysts vol.7, pp.4, 2016, https://doi.org/10.5229/JECST.2016.7.4.316
  2. Strategic Modification of BiVO4 for Improving Photoelectrochemical Water Oxidation Performance vol.117, pp.18, 2013, https://doi.org/10.1021/jp400415m
  3. Electrochemical Preparation of Ru/Co Bi-layered Catalysts on Ti Substrates for the Oxygen Evolution Reaction vol.37, pp.8, 2016, https://doi.org/10.1002/bkcs.10853
  4. In-depth investigation of an In–Ni–Ta–O–N photocatalyst for overall water splitting under sunlight vol.320, 2014, https://doi.org/10.1016/j.jcat.2014.10.002
  5. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2 vol.9, pp.2, 2016, https://doi.org/10.1039/C5EE02575C
  6. Applied bias photon-to-current conversion efficiency of ZnO enhanced by hybridization with reduced graphene oxide vol.26, pp.2, 2017, https://doi.org/10.1016/j.jechem.2016.11.006
  7. Photocatalytic Water Oxidation on ZnO: A Review vol.7, pp.3, 2017, https://doi.org/10.3390/catal7030093
  8. Enhancing efficiency of Fe 2 O 3 for robust and proficient solar water splitting using a highly dispersed bioinspired catalyst vol.352, 2017, https://doi.org/10.1016/j.jcat.2017.04.023
  9. A systematic study of the relationship among the morphological, structural and photoelectrochemical properties of ZnO nanorods grown using the microwave chemical bath deposition method vol.71, pp.3, 2017, https://doi.org/10.3938/jkps.71.171
  10. Solar-hydrogen Production by a Monolithic Photovoltaic-electrolytic Cell vol.3, pp.4, 2012, https://doi.org/10.5229/JECST.2012.3.4.149
  11. Fabrication and characterization of ZnO nanorods on polished titanium substrate using electrochemical–hydrothermal methods vol.544, 2013, https://doi.org/10.1016/j.tsf.2013.01.029
  12. Photoelectrochemical Performances of Hematite (α-Fe2O3) Films Doped with Various Metals vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10290
  13. Photochemical Deposition of Co-Ac Catalyst on ZnO Nanorods for Solar Water Oxidation vol.162, pp.4, 2015, https://doi.org/10.1149/2.0531504jes