• Title/Summary/Keyword: Thin electrode

Search Result 1,276, Processing Time 0.026 seconds

The Leakage Current Properties of BST thin films with Unsymmetrical Electrode Materials (BST 박막의 비대칭전극재료에 따른 누설전류특성)

  • 전장배;김덕규;박영순;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.329-332
    • /
    • 1999
  • In this paper, BST((Bao.&o,dTi0:3) thin films were deposited by the rf magnetron sputtering method on Pt/$SiO_2$/Si substrate. Pt, $RuO_2$, Ag, Cu films for the formation of top electrode were deposited on BST thm films. And then Top Electrodes/BST/Pt capacitors were annealed with rapid thermal annealing(RTA) at various temperature. We have investigated effect of post-annealing on the electrical properties such as dielectric constant and leakage current of the capacitors. It was found that electrical properties of the capacitors were greatly depended on the annealing temperatures as well as the materials of top electrodes. In BST thin films with Pt top electrode was annealed at $700^{\circ}C$. the dielectric constant was measured to the value of 346 at l[kHzl and the leakage current was obtained to the value of $8.76\times10^8$[A/$\textrm{cm}^2$] at the forward bias of 2[V].

  • PDF

A Study on the Electronic Properties of LB Thin Films (LB박막의 전자이동 특성에 관한 연구)

  • Song, Jin-Won;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.101-104
    • /
    • 2002
  • Abstract We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 10[mN/m]. In processing of a device manufacture, we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/Poly-${\gamma}$ Benzyl $_D$-Glutamate/Al; the number of accumulated layers is 1, 3, 5 and 7. Also, we then examined of the MIM device by means of I-V. The I-V characteristic of the device is measured from 0 to +2[V]. We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. LB film accumulated by monolayer on an ITO. In the cyclicvoltammetry, An Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode measured in $LiBF_4$ solution, stable up to 0.9V vs. Ag/AgCl.

  • PDF

Characterization and fabrication of one component solution based CNT/epoxy binder conductive films (일액형 탄소나노튜브/에폭시 바인더 코팅액을 이용한 전도성 필름 제조 및 특성 분석)

  • Han, Joong-Tark;Woo, Jong-Seok;Kim, Sun-Young;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.455-456
    • /
    • 2007
  • Optically transparent, highly conductive coating have been major theme of thin film science efforts for some years. In this work, t-MWNT(thin Multi-walled Carbon Nanotubes) are acid treated, then the stable dispersion of t-MWNTs in polar solvent such as alcohols, was achieved by sonication. The transparent conducting films are prepared using the one component solution of t-MWNT/epoxy binder via spray coating on glass substrate. The characterization of acid treated t-MWNTs was performed by Raman spectrometer. The opto-electrical properties of conducting films are analyzed by the binder concentration, and the effect of co-solvent on the compatibility and dispersibility of one component t-MWNT/epoxy binder solutions are discussed.

  • PDF

Study on the Electrical Stability of Al-doped ZnO Thin Films For OLED as an alternative electrode

  • Jung, Jong-Kook;Lee, Seong-Eui;Lim, Sil-Mook;Lee, Ho-Nyeon;Lee, Young-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1469-1472
    • /
    • 2006
  • We investigated the electrical and optical properties of ZnO:Al thin films as a function of the thermal process conditions. The film was prepared by RF magnetron sputtering followed by annealing in a box furnace in air. An ZnO:Al (98:2) alloy with the purity of 99.99% (3 inch diameter) was used as the target material. The electrical properties of the transparent electrode, exhibited surface oxidation as a result of rapid oxygen absorption with increasing annealing temperature. The processed ZnO:Al films and commercial ITO(indium-tin-oxide) were applied to an OLED stack to investigate the current density and luminescence efficiency. The efficiency of the device using the ZnO:Al electrode was higher than that from the device using the ITO electrode.

  • PDF

Electrical and thermal characteristics of PRAM with thickness of phase change thin film (상변화 박막의 두께에 따른 상변화 메모리의 전류 및 열 특성)

  • Choi, Hong-Kyw;Kim, Hong-Seung;Lee, Seong-Hwan;Jang, Nak-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.162-168
    • /
    • 2008
  • In this paper, we analyzed the heat transfer phenomenon and the reset current variation of PRAM device with thickness of phase change material using the 3-D finite element analysis tool. From the simulation, Joule's heat was generated at the contact surface of phase change material and bottom electrode of PRAM. As the thickness of phase change material was decreased, the reset current was highly increased. In case thickness of phase change material thin film was $200\;{\AA}$, heat increased through top electrode and reset current caused by phase transition highly increased. And as thermal conductivity of top electrode decreased, temperature of unit memory cell was increased.

A Study on the Electronic Properties of Organic Thin Films that Manufacture by LB Method (LB법으로 제작한 유기박막의 전자이동특성에 관한 연구)

  • Song, Jin-Won;Kim, Young-Keun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1539-1541
    • /
    • 2002
  • When did Metal (Au, Al) electrode differently, it is spread already that it is by energy level of electrode difference of electrical conductivity. This paper, experiment manufactures device of Metal/Organic Films/Metal structure using PBDG and I-V properties by electrode analyzed comparison. Also, measure energy level by electrode by propertiesy electrochemistry and studied about electron transfer of organic thin film in LUMO level relation with HOMO level.

  • PDF

Iron(II) Tris(3-bromo-1,10-phenanthroline) Complex: Synthesis, Crystal Structure and Electropolymerization

  • Lee, Kyeong-Jong;Yoon, Il;Lee, Shim-Sung;Lee, Bu-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.399-403
    • /
    • 2002
  • The complex of iron(II) tris(3-Br-phen) (3-Br-phen; 3-bromo-1,10-phenanthroline) was prepared as a precursor of electropolymerization and the crystal structure of [Fe(3-Br-phen)3]($PF_6$)2${\cdot}$CH3CN with a distorted octahedral geometry has been investigated. The reductive electropolymerization of $>[Fe(3-Br-phen)3]^{2+}$ complex onto the surface of a glassy carbon electrode and indium tin oxide (ITO) optically transparent electrode were performed in acetonitrile at room temperature. Thin film of poly-$>[Fe(3-Br-phen)3]^{2+}$ formed was adherent, electroactive and stably deposited on a glassy carbon disk electrode. The thin metallopolymeric film formed was also confirmed by absorption spectroscopy.

Flexible Plasma Sheets

  • Cho, Guangsup;Kim, Yunjung
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.23-25
    • /
    • 2018
  • With respect to the electrode structure and the discharge characteristics, the atmospheric pressure plasma sheet of a thin polyimide film is introduced in this study; here, the flexible plasma device of a dielectric-barrier discharge with the ground electrode and the high-voltage electrode formulated on each surface of a polyimide film whose thickness is approximately $100{\mu}m$, that is operated with a sinusoidal voltage at a frequency of 25 kHz and a low voltage from 1 kV to 2 kV is used. The streamer discharge is appeared along the cross-sectional boundary line between two electrodes at the ignition stage, and the plasma is diffused on the dielectric-layer surface over the high-voltage electrode. In the development of a plasma sheet with thin dielectric films, the avoidance of the insulation breakdown and the reduction of the leakage current have a direct influence on the low-voltage operation.

Elctrical Properties of DLPC Lipid Membrane Fabricated on the Silicon Wafer (실리콘 웨이퍼 위에 제작된 DLPC 지질막의 전기적특성)

  • 이우선;김충원;이강현;정용호;김남오;김상용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1115-1121
    • /
    • 1998
  • MLS capacitor with lipid ultra thin films were deposited by Langmuir-Blodgett (LB) method on the silicon wafer. The current versus voltage and capacitance versus voltage relationships are depend on the applied voltage, electrode area and electrode materials. LB films deposited were made of L-$\alhpa$-DLPC, the 1 layer’s thickness of 35${\AA}$ was measured by ellipsometer. And MLS capacitor with different electrode materials, the work function of these materials was investigated to increase the leakage current. The result indicated the lower leakage current and very high saturation value of capacitance was reached within 700-800 pF when the two electrode was Ag. And $\varepsilon$1, $\varepsilon$2 versus photon energy showed good film formation.

  • PDF

Characteristics of Carbon-Doped Mo Thin Films for the Application in Organic Thin Film Transistor (유기박막트랜지스터 응용을 위한 탄소가 도핑된 몰리브덴 박막의 특성)

  • Dong Hyun Kim;Yong Seob Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.588-593
    • /
    • 2023
  • The advantage of OTFT technology is that large-area circuits can be manufactured on flexible substrates using a low-cost solution process such as inkjet printing. Compared to silicon-based inorganic semiconductor processes, the process temperature is lower and the process time is shorter, so it can be widely applied to fields that do not require high electron mobility. Materials that have utility as electrode materials include carbon that can be solution-processed, transparent carbon thin films, and metallic nanoparticles, etc. are being studied. Recently, a technology has been developed to facilitate charge injection by coating the surface of the Al electrode with solution-processable titanium oxide (TiOx), which can greatly improve the performance of OTFT. In order to commercialize OTFT technology, an appropriate method is to use a complementary circuit with excellent reliability and stability. For this, insulators and channel semiconductors using organic materials must have stability in the air. In this study, carbon-doped Mo (MoC) thin films were fabricated with different graphite target power densities via unbalanced magnetron sputtering (UBM). The influence of graphite target power density on the structural, surface area, physical, and electrical properties of MoC films was investigated. MoC thin films deposited by the unbalanced magnetron sputtering method exhibited a smooth and uniform surface. However, as the graphite target power density increased, the rms surface roughness of the MoC film increased, and the hardness and elastic modulus of the MoC thin film increased. Additionally, as the graphite target power density increased, the resistivity value of the MoC film increased. In the performance of an organic thin film transistor using a MoC gate electrode, the carrier mobility, threshold voltage, and drain current on/off ratio (Ion/Ioff) showed 0.15 cm2/V·s, -5.6 V, and 7.5×104, respectively.