• Title/Summary/Keyword: Thin Heat Pipe

Search Result 24, Processing Time 0.033 seconds

A Study on the Evaluation of Pressure Resistance and Effective Thermal Conductivity of Thin Heat Pipes Using Polymer Compound Sheets for Bonding Metal Thin Plates (금속박판 접합용 고분자화합물시트를 이용한 박형 히트파이프 내압성 및 유효열전도율 평가에 관한 연구)

  • Yu, Byeong-Seok;Kim, Jeong-Hun;Kim, Dong-Gyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.509-515
    • /
    • 2021
  • In this study, a pressure vessel for a heat pipe was fabricated by bonding a metal thin film using a polymer compound sheet. In order to confirm the applicability of the experimentally manufactured copper material thin heat pipe of 0.6 mm or less, the pressure resistance and effective thermal conductivity for pressure generated according to the type of the working fluid of the heat pipe were evaluated to suggest the commercialization potential of the thin heat pipe. As a result of evaluating the pressure resistance and effective thermal conductivity performance of the thin heat pipe, the following conclusions were drawn. 1) Using a PEEK-based polymer compound sheet, it was possible to fabricate a pressure vessel for a thin heat pipe with a pressure resistance of up to 1.0 MPa by bonding a copper thin film, and the possibility of commercialization was confirmed at a temperature below 120 ℃. 2) In the case of the effective thermal conductivity performance evaluation test, the effective thermal conductivity of ethanol was higher than that of FC72 and Novec7000, and in the case of ethanol, the maximum effective thermal conductivity was 2,851 W/mK at 3.0 W of heating.

Development of the Structure for Enhancing Capillary Force of the Thin Flat Heat Pipe Based on Extrusion Fabrication (압출형 박판 히트파이프의 모세관력 향상을 위한 구조 개발)

  • Moon, Seok Hwan;Park, Yoon Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.755-759
    • /
    • 2016
  • The use of heat pipes in the electronic telecommunication field is increasing. Among the various types of heat pipes, the thin flat heat pipe has relatively high applicability compared with the circular heat pipe in the electronic packaging application. The thin flat heat pipe based on extrusion fabrication has a simple capillary wick structure consisting of rectangular cross sectional grooves on the inner wall of the pipe. Although the groove serves as a simple capillary wick, and many such grooves are provided on the inner wall, it is difficult for the grooves to realize a sufficiently high capillary force. In the present study, a thin flat heat pipe with a wire bundle was developed to overcome the drawback of poor capillary force in the thin flat heat pipe with grooves, and was evaluated by conducting tests. In the performance test, the thin flat heat pipe with the wire bundle showed a lower thermal resistance of approximately 3.4 times, and a higher heat transfer rate of approximately 3.8 times with respect to the thin flat heat pipe with grooves as the capillary wick respectively. The possibility of using the wire bundle as a capillary wick in the heat pipe was validated in the present study; further study for commercializing this concept will be taken up in the future.

A Study on the Cooling of High Power LED Component using Flat Heat Pipe (히트파이프를 사용한 조명용 LED의 냉각에 대한 연구)

  • Jang, Young-Woon;Kim, Byung-Ho;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.25-29
    • /
    • 2009
  • In this study, a thin plate-type heat pipe, instead of a solid aluminium heat sink, is used to eliminate heat released from LED components for lighting. Effects of the heat pipe size and installation angle are studied both in numerically and experimentally. According to the results, temperature on LED chip, when a heat pipe is used, is $1.2^{\circ}C$ lower than using the conventional metal PCB. The overall temperature drop is $32^{\circ}C$ if the heat pipe is properly used. The highest cooling performance is obtained in the case when the angle of a heat pipe installation is $90^{\circ}$.

  • PDF

Development of Flat Plate Heat Pipe Using Screen Meshes (스크린 메쉬를 이용한 판형 히트 파이프의 개발)

  • Lee, Yong-Duck;Hong, Young-Ho;Kim, Hyun-Tae;Kim, Ku-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1506-1511
    • /
    • 2003
  • The present study proposes a new structure for a flat plate heat pipe which could embody a thin thickness, any shapes and high heat density a unit area. It is on the structure for the formation of vapor passages and the support of the case of the flat plate heat pipe. A screen mesh is used as the one. To verify the validity of the one, the flat plate heat pipe of 1.08mm thickness was made with a layer of the screen mesh with 14 and 100 mesh number respectively and tested. Here the screen mesh with 14 mesh number plays a role of the vapor passage and the support of the case and the screen mesh with 100 mesh number functions as the wick structure. T he results show that the screen mesh excellently carries out the function of the vapor passage and the support of the case.

  • PDF

Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential

  • Wang, Zetao;Guo, Kailun;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3117-3129
    • /
    • 2022
  • Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520-600 K (the startup of the heat pipe), the h has approached 5-6 W m-2 K-1 while liquid film thickness is in 11-13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.

Heat Transfer Characteristics of Plastic Particle Slurry in a Circular tube Flow (관내 유동 플라스틱 슬러리의 열전달 특성)

  • 김명환;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.451-456
    • /
    • 2004
  • This present experimental study has dealt with the heat transfer characteristics of plastic particle slurry which flows in a circular tube. This type of slurry is suggested for heat transfer enhancement effect cause by random and vortex effect of plastic particle dispersed in water. As a result, the thermal boundary layer becomes thin so the heat transfer coefficient on the tube wall more increase compare to pure water flow. This experimental test section was composed with stainless pipe which has the length of 2000mm, inner pipe diameter of 14mm and outer pipe diameter of 60mm. The most effective and important parameter of this experiment is plastic packing factor(PPF). The focuses of these results are pressure drop and heat transfer coefficient. As results, the friction factor of plastic particle slurry becomes higher at laminar flow region than pure water because of buoyancy effect of plastic particle but the local heat transfer coefficient becomes higher.

Study on Fluid Flow and Heat Transfer Characteristics in a Flat Heat Pipe (평판형 히트 파이프 내의 유체 유동 및 열전달 특성에 관한 연구)

  • Do, Kyu-Hyung;Kim, Sung Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2113-2118
    • /
    • 2007
  • In this study, a mathematical model for a thermal analysis of a flat heat pipe with a grooved wick structure is presented. The effects of the liquid-vapor interfacial shear stress, the contact angle, and the amount of liquid charge have been included in the proposed model. In particular, the axial variations of the wall temperature and the evaporation/condensation rates are considered by solving the one-dimensional conduction and the augmented Young-Laplace equations, respectively. In order to verify the model, the results obtained from the model are compared to existing experimental data.

  • PDF

Performance of a Heat pipe with Axial Grooves Formed from Corrugated Plate (접힌 板材 로 만든 그루우브 를 갖는 熱파이프 에 관한 硏究)

  • 김태현;김기현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 1985
  • Heat pipe with axial grooves formed from corrugated plate in the adiabatic section is studied. The axial grooves made of thin corrugated plate decrease considerably the flow resistance in the adiabatic section without increasing the thermal resistance of the heat pipe, resulting in the increase of the capillary limit, especially in the cases of heat pipes that have long adiabatic section. In the theoretical analysis, it is assumed that the liquid flow in each section laminar and fully developed and Darcy's equation can be applied to each section neglecting the end-effects associated with each transitionary region. A heat pipe which consists of axially corrugated rectangular grooves in the adiabatic section and bronze mesh in the evaporator and codenser sections was made and tested. Comparison of the experimental results, using acetone as the working fluid, with the theoretical result shows satisfactory agreement.

Application of Miniature Heat Pipe for Notebook PC Cooling (노트북 PC CPU 냉각용 소형 히트파이프 Packaging 연구)

  • Moon, Seok-Hwan;Hwang, Gunn;Choy, Tae-Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.799-803
    • /
    • 2001
  • Miniature heat pipe(MHP) with woven-wired wick was used to cool the CPU of a notebook PC. The pipe with circular cross-section was pressed and bent for packaging the MHP into a notebook PC with very limited compact packaging space. A cross-sectional area of the pipe is reduced about 30% as the MHP with 4mm diameter is pressed to 2mm thickness. In the present study a performance test has been performed in order to review varying of operating performance according to pressed thickness variation and heat dissipation capacity of MHP cooling module that is packaged on a notebook PC. New wick type was considered for overcoming low heat transfer limit when MHP is pressed to thin-plate. The limiting thickness or pressing is shown to be within the range of 2mm∼2.5mm through the performance test with varying the pressing thickness. When the wall thickness of 0.4mm is reduced to 0.25mm for minimizing conductive thermal resistance through the wall of heat pipe, heat transfer limit and thermal resistance of MHP were improved about 10%. In the meantime, it is shown that the thermal resistance and heat transfer limit for the MHP with central wick type are higher than those of MHP with existing wick types. The results of performance test for MHP cooling modules with woven-wired wick to cool a notebook PC shows the stability as cooling system since T(sub)j(Temperature of Processor Junction) satisfy a demand condition of 0∼100$\^{C}$ under 11.5W of CPU heat.

Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements (매스콘크리트 시험체의 수화열 해석 및 실험)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF