• 제목/요약/키워드: Thin Film Thickness

검색결과 1,956건 처리시간 0.033초

수열결정화법에 의한 A 및 Y형 제올라이트 박막의 제조 (Preparation of A and Y type zeolite film by hydrothermal crystallization)

  • 김건중;박노춘;안화승;남세종
    • 한국결정성장학회지
    • /
    • 제8권1호
    • /
    • pp.55-63
    • /
    • 1998
  • 조성이 각각 1.9 $SiO_2-1.5\;Na_2O-Al_2O_3-40\;H_2O$인 반응물과 10 $SiO_2-7\;Na_2O-Al_2O_3-280\;H_2O$인 반응물로부터 다공성 지지판에 성장된 A형 및 Y형 제올라이트 결정박막을 합성하였다. 합성된 제올라이트 막은 X선회절분석기와 주사전자현미경으로 특성을 검토하였다. 지지체 상에 붙어 성장한 A 및 Y형 제올라이트 결정은 치밀하게 서로 붙은 상태였으며 그 두께가 약 8-15$\mu$m 정도였다. 또한 반응물을 조제할 때, 물은 첨가하지 않은 채로 혼합하고 디스크형으로 가압성형하여 $100^{\circ}C$에서 결정화시켜도 치밀하게 성장된 제올라이트 결정박막을 합성할 수 있었다. 박막으로 결정화시킨 A형 제올라이트는 미세세공의 분자체기능을 통하여 물과 메탄올의 혼합수용액에서 물만을 선택적으로 투과시키는 것을 알 수 있었다.

  • PDF

나노기공구조를 가진 알루미나필름의 트라이볼로지 특성 (Tribological Properties of Nanoporous Structured Alumina Film)

  • 김효상;김대현;안효석;한준희;이우
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.14-20
    • /
    • 2010
  • Tribological properties of nanoporous structured alumina film was investigated. Alumina film (AAO: anodic aluminum oxide) of $60{\mu}m$ thickness having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as a counterpart were carried out with wide range of normal load from 1 mN to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient was strongly influenced by the applied normal load. Smooth layer patches were formed on the worn surface of both AAO and steel ball at relatively high load (100 mN and 1 N) due to tribochemical reaction and compaction of wear debris. These tribolayers contributed to the lower friction at high loads. Extremely thin layer patches, due to mild plastic deformation of surface layer, were sparsely distributed on the worn surface of AAO at low loads (1 mN and 10 mN) without the evidence of tribochemical reaction. Delaminated wear particles were generated at high loads by fatigue due to repeated loading and sliding.

질산염 전구체 원료로 Ex-situ 공정에 의한 GdBCO 박막 제조 (Preparation of GdBCO Thin Film by Ex-situ Process using Nitrate Precursors)

  • 김병주;이철선;이종범;이재훈;문승현;이희균;홍계원
    • Progress in Superconductivity
    • /
    • 제13권2호
    • /
    • pp.127-132
    • /
    • 2011
  • Many research groups have been manufacturing coated conductor by various processes such as PLD, MOD, and MOCVD, but the methods with production cost suitable for wide and massive application of coated conductor did not develop yet. Spray pyrolysis method adopting ultrasonic atomization was tried as one of the possible option. GdBCO precursor films have been deposited on IBAD substrate by spray pyrolysis method at low temperature and converted to GdBCO by post heat treatment. Ultrasonic atomization was used to generate fine droplets from precursor solution of Gd, Ba, and Cu nitrate dissolved in water. Primary GdBCO films were deposited at $500^{\circ}C$ and oxygen partial pressure of 1 torr. After that, the films were converted at various temperatures and low oxygen partial pressures. C-Axis oriented films were obtained IBAD substrates at conversion temperature of around $870^{\circ}C$ and oxygen partial pressures of 500 mtorr ~ 1 torr in a vacuum. Thick c-axis epitaxial film with the thickness of 0.4 ~ 0.5 ${\mu}m$ was obtained on IBAD substrate. C-axis epitaxial GdBCO films were successfully prepared by ex-situ methods using nitrate precursors on IBAD metal substrate. Converted GdBCO films have very dense microstructures with good grain connectivity. EDS composition analysis of the film showed a number of Cu-rich phase in surface. The precursor solution having high copper concent with the composition of Gd : Ba : Cu = 1 : 2 : 4 showed the better grain connectivity and electrical conductivity.

FTES/$O_2$-PECVD 방법에 의한 SiOF 박막형성 (Formation of SiOF Thin Films by FTES/$O_2$-PECVD Method)

  • 김덕수;이지혁;이광만;강동식;최치규
    • 한국재료학회지
    • /
    • 제9권8호
    • /
    • pp.825-830
    • /
    • 1999
  • FTES/$O_2$-PECVD 방법에 의하여 증착된 SiOF 박막의 특성을 FT-IR, SPS, 그리고 ellipsometry로 분석하였다. 유전상수, breakdown field와 누설전류 밀도는 MIS(Au/SiOF/p-Si) 구조로 형성하여 C-V와 I-V특성곡선으로부터 측정하였다. SiOF박막의 step-coverage는 SEM 단면사진으로 조사하였다. FTES와 $O_2$의 유량을 각각 300sccm으로 반응로에 주입하였을 때 양질의 SiOF 박막이 형성되었다. 형성된 박막의 유전상수는 3.1로서 다른 산화막보다 더 낮은 값으로 나타났다. breakdown field와 누설전류밀도는 약 10MV/cm와 $8{\times}10^{9}A/\textrm{cm}^2$로 측정되었다. $0.3{\mu}{\textrm}{m}$ 금속 패턴에 $2500{\AA}$의 두께로 증착된 SiOF 박막은 전극간에 void가 없이 우수한 덮힘을 보였다.

  • PDF

관전압과 X선노출시간의 변화가 X선사진의 흑화도와 대조도에 미치는 영향에 관한 실험적 연구 (EXPERIMENTAL STUDY OF INFLUENCE ON RADIOGRAPHIC DENSITY AND CONTRAST BY THE CHANGE OF KILOVOLTAGE AND EXPOSURE TIME)

  • 이병도;이상래
    • 치과방사선
    • /
    • 제20권1호
    • /
    • pp.113-124
    • /
    • 1990
  • For the study of the influence of kilovoltage and exposure time on radiographic density and contrast, we measured radiographic density of aluminum step wedge which composed of contiguous 8 steps wedges of 2-16㎜ thickness with densitometer. Aluminum step wedge was radiographed on Kodak ultraspeed DF-58 and Ektaspeed EP-21 film with range of 60-90 kVp and 5-60 impulse and subject contrast of aluminum step wedge with constant radiographic density and image contrast percentage without radiographic density was evaluated. Then we evaluated the film quality of teeth and their surrounding structure according to the change of kVp and exposure time by score rating method. The obtained results were as follows: 1. Radiographic density was related to the change of kilovoltage, especially in increased exposure time. 2. With constant radiographic density, subject contrast of thin aluminum step wedges was greater in low kilovolt age than high kilovoltage, but kilovolt age had not great influence on subject contrast of thick aluminum step wedge. On the other hand, radiographic density difference between 2mm and 16mm aluminum step wedge was decreased according to in- creasing kilovoltage. 3. Without constant radiographic density, image contrast percentage was decreased with increasing kilovoltage, but was not related with the change of exposure time. 4. Radiographic contrast of teeth and their surrounding structure which was taken with the range of 60-90 kVp and 6-30 impulse had not great influence on film quality.

  • PDF

Growth of ${\gamma}$-Al2O3 (111) on an ultra-thin interfacial Al2O3 layer/NiAl(110)

  • Lee, M.B.;Frederick, B.G;Richardson, N.V.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제2권2호
    • /
    • pp.63-77
    • /
    • 1998
  • The oxidation of NiAl(110) was investigated in the temperature regime between 300K and 1300 K using LEED (low energy electron diffraction), TPD (temperature programmed desorption) and HREELS (high resolution electron energy loss spectroscopy). The adsorption of N2O and O2 up to reconstructions. Stepwise annealing of the oxygen-saturated sample from 600 K to 1300K in UHV (ultra-high vacuum,) results in firstly the onset of randomly oriented then finally fairly well-ordered. 5 ${\AA}$ Al2O3 film with quasi-hexagonal periodicity. Ordered thicker oxide films of 18-30 ${\AA}$ seem to be grown on this interfacial oxide layer by direct oxidation of sample at elevated temperature between 1150 and 1300 K because of the LEED pattern consisting of new broad hexagonal spots and the previous 5 ${\AA}$ spots. Although the periodicity of surface oxygen arrays shows no significant change from an hexagonal close-packing, the O-O distance changes from ∼3.0 ${\AA}$ film to ∼2.9 ${\AA}$ for thicker oxides. with the appearance of Auger parameter, for the 5${\AA}$ film can be described better as an interfacial oxide layer. The observation of three symmetric phonon peaks can be also a supporting evidence for this phase assignment since thicker oxide films on the Same Ni2Al3(110) show somewhat different phonon structure much closer to that of the ${\gamma}$-Al2O3. The adsorption/desorption of methanol further proves the preparation of less-defective and/or oxygen-terminated Al2O3 films showing ordered phase transitions with the change of oxide thickness between 5 ${\AA}$ to 30 ${\AA}$.

  • PDF

잉크젯 프린팅을 이용한 초박막 투명 TiO2 코팅층 제조 (Preparation of Ultra-Thin Transparent TiO2 Coated Film by Ink-Jet Printing Method)

  • 윤초롱;오효진;이남희;;이원재;박경순;김선재
    • 한국표면공학회지
    • /
    • 제40권4호
    • /
    • pp.190-196
    • /
    • 2007
  • Dye sensitized solar cells(DSSC) are the most promising future energy resource due to their high energy efficiency, low production cost, and simple manufacturing process. But one problem in DSSC is short life time compared to silicon solar cells. This problem occurred from photocatalytic degradation of dye material by nanometer sized $TiO_2$ particles. To prevent dye degradation as well as to increase its life time, the transparent coating film is needed for UV blocking. In this study, we synthesized nanometer sized $TiO_2$ particles in sols by increasing its internal pressure up to 200 bar in autoclave at $120^{\circ}C$ for 10 hrs. The synthesized $TiO_2$ sols were all formed with brookite phase and their particle size was several nm to 30 nm. Synthesized $TiO_2$ sols were coated on the backside of fluorine doped tin oxide(FTO) glass by ink jet printing method. With increasing coating thickness by repeated ink jet coating, the absorbance of UV region (under 400 nm) also increases reasonably. Decomposition test of titania powders dispersed in 0.1 mM amaranth solution covered with $TiO_2$ coating glass shows more stable dye properties under UV irradiation, compared to that with as-received FTO glass.

인산용액에서 양극산화 인가전압에 따른 알루미늄 산화피막 성장 관찰 (Observation of Diverse Aluminum Oxide Structures in a Phosphoric Acid Solution according to the Applied Anodization Voltage)

  • 정찬영
    • 마이크로전자및패키징학회지
    • /
    • 제26권1호
    • /
    • pp.35-39
    • /
    • 2019
  • 현재까지 다공성 알루미나 구조물은 대표적으로 양극산화 방법으로 구현되어 오고 있다. 양극산화 방법을 통해 규칙적인 배열을 가진 알루미늄 산화 피막은 쉽게 만들 수 있지만, 복합 구조물 형태를 가진 산화피막은 상대적으로 구현하기가 어렵다. 본 연구는 인산용액에서 양극산화 인가전압에 따른 피막 기공 크기, 두께 및 구조물 형태 변화를 관찰하고자 한다. 다층 복합 산화물 구조물 구현을 위해 양극산화 인가전압 조건을 조절하였고, 실험 조건은 10% 인산용액에서 양극산화 인가전압 100 V와 120 V로 각각 수행하였다. 실험 결과는 각 조건에 따라 다공성 구조물과 복합 구조물 형태의 산화물 구조를 구현할 수 있었다.

원자층 증착법으로 증착된 MoOx를 적용한 전하 선택 접합의 이종 접합 태양전지 (Heterojunction Solar Cell with Carrier Selective Contact Using MoOx Deposited by Atomic Layer Deposition)

  • 정민지;조영준;이선화;이준신;임경진;서정호;장효식
    • 한국재료학회지
    • /
    • 제29권5호
    • /
    • pp.322-327
    • /
    • 2019
  • Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[$Mo(CO)_6$] as precursor and ozone($O_3$) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the $Mo^{6+}$ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from $576^{\circ}C$ to $620^{\circ}C$ at 250 g/Nm after post-deposition annealing at $350^{\circ}C$ in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.

불소화 에틸렌 프로필렌 나노 입자 분산액을 이용한 3차원 다층 미세유체 채널 제작 (Fabrication of 3D Multilayered Microfluidic Channel Using Fluorinated Ethylene Propylene Nanoparticle Dispersion)

  • 민경익
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.639-643
    • /
    • 2021
  • 본 연구에서는 3차원 다층 미세유체 디바이스를 제작하기 위한 접착제로서 불소화 에틸렌 프로필렌(fluorinated ethylene propylene, FEP) 나노입자를 연구하였다. FEP 분산 용액을 1500 rpm에서 30초 동안 단순 스핀 코팅하여 기판에 3 ㎛ 두께의 균일하게 분포된 FEP 나노 입자 층을 형성하였다. FEP 나노입자는 300 ℃에서 1시간 동안 열처리 후 소수성 박막으로 변형되었으며, FEP 나노입자를 이용하여 제작된 폴리이미드 필름 기반 미세유체 디바이스는 최대 2250 psi의 압력을 견디는 것을 확인하였다. 마지막으로 기존의 포토리소그래피로 제작하기 어려운 16개의 마이크로 반응기로 구성된 3차원 다층 미세유체 디바이스를 FEP가 코팅된 9개의 폴리이미드 필름을 간단한 1단계 정렬로 성공적으로 구현하였다. 개발된 3차원 다층 미세유체 디바이스는 화학 및 생물학의 다양한 응용을 위한 고속대량 스크리닝, 대량 생산, 병렬화 및 대규모 미세유체 통합과 같은 강력한 도구가 될 가능성이 있습니다.