• Title/Summary/Keyword: Thin Film Adhesion

Search Result 310, Processing Time 0.025 seconds

Interface Structure and Thin Film Adhesion (계면구조와 박막의 접착)

  • Lee, Ho-Young;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.37-43
    • /
    • 2002
  • A number of thin-film deposition technologies have been developed. However, even a thin film whose properties are excellent may not be used as long as the adhesion strength between the thin film and the substrate is poor. For thin films, the adhesion strength is as important as the properties. In the present article, relation between interface structure and thin film adhesion, and factors affecting thin film adhesion are reviewed. Two kinds of factors, internal factors and external factors, affect thin film adhesion. Such factors as composition, structure, and reactivity of both thin film and substrate as well as surface roughness of the substrate and residual stress of the thin film belong to internal factors. And such factors as load, temperature, humidity, and corrosive environment belong to external factors. It is also reviewed that how we can control the internal factors and the external factors to enhance or keep the adhesion strength.

  • PDF

Effects of Intermediate Layer in DLC Thin Film on Al2O3 for Improvement of High Temperature Strength

  • Ok, Chul-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.125-130
    • /
    • 2007
  • DLC coating on ceramics is very useful for manufacturing the materials with hardness and low friction. Adhesion of DLC thin film on ceramics, on the other hand, is usually very weak. Adhesion of DLC film depends on many parameters such as contamination and chemical bonding between thin film and substrate. In this study, adhesion of DLC film on ceramics was improved by the intermediate layer when the plasma immersion ion deposition (PIID) technique was applied. It is found that the chemical composition and the thickness of intermediate layer have significantly an effect on the adhesion of DLC thin film on $Al_2O_3$.

Recent Advances in Scanning Acoustic Microscopy for Adhesion Evaluation of Thin Films

  • Ju, Hyeong-Sick;Tittmann, Bernhard R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.534-549
    • /
    • 2009
  • As the thin film technology has emerged in various fields, adhesion of the film interface becomes an important issue in terms of the longevity and durability of thin film devices. Diverse nondestructive methods utilizing acoustic techniques have been developed to assess the interfacial integrity. As an effective technique based on the ultrasonic wave focusing and the surface acoustic wave(SAW) generation, scanning acoustic microscopy(SAM) has been investigated for adhesion evaluation. Visualization of film microstructures and quantification of adhesion weakness levels by SAW dispersion are the recent achievements of SAM. To overcome the limitations in the theoretical dispersion model only suitable for perfectly elastic and isotropic materials, a new model has been more recently developed in consideration of film anisotropy and viscoelasticity and applied to the adhesion evaluation of polymeric films fabricated on semiconductive wafers.

Effects of Substrate Hardness on the Hardness and Adhesion of TiN Deposited by R.F. PACVD (R.F. PACD에 의하여 증착된 TiN의 경도와 밀착력에 미치는 모재 경도의 영향)

  • Kim, S.K.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.1
    • /
    • pp.19-29
    • /
    • 1991
  • This study was to investigate the influence of the substrate hardness on the hardness and adhesion of TiN thin film deposited by R.F. PACVD. Although the substrate hardness changed, chemical composition, stoichiometry and structure of TiN thin film did not change. ISE index was 1.96-1.99 for the substrate and was 1.57-1.79 for TiN thin film. And ISE index of TiN thin film was inverse proportion to the substrate hardness. When the substrate hardness was low, TiN thin film had many cracks around the indentation. But as the substrate hardness increased, TiN thin film had a few cracks and the deformation was limited within indentation. In having measured the adhesion of TiN thin film by SAT, the critical load (Lc) generally increased as the substrate hardness decreased.

  • PDF

A Molecular Simulation on the Adhesion Control of Metal Thin Film-Carbon Nanotube Interface based on Thermal Wetting (Thermal wetting 현상이 탄소나노튜브-금속박막 계면의 응착력에 미치는 영향에 관한 분자 시뮬레이션 연구)

  • Sang-Hoon Lee;Hyun-Joon Kim
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.8-12
    • /
    • 2023
  • This study presents a molecular simulation of adhesion control between carbon nanotube (CNT) and Ag thin film deposited on silicon substrate. Rough and flat Ag thin film models were prepared to investigate the effect of surface roughness on adhesion force. Heat treatment was applied to the models to modify the adhesion characteristics of the Ag/CNT interface based on thermal wetting. Simulation results showed that the heat treatment altered the Ag thin film morphology by thermal wetting, causing an increase in contact area of Ag/CNT interface and the adhesion force for both the flat and rough models changed. Despite the increase in contact area, the adhesion force of flat Ag/CNT interface decreased after the heat treatment because of plastic deformation of the Ag thin film. The result suggests that internal stress of the CNT induced by the substrate deformation contributes in reduction of adhesion. Contrarily, heat treatment to the rough model increases adhesion force because of the expanded contact area. The contact area is speculated to be more influential to the adhesion force rather than the internal stress of the CNT on the rough Ag thin film, because the CNT on the rough model contains internal stress regardless of the heat treatment. Therefore, as demonstrated by simulation results, the heat treatment can prevent delamination or wear of CNT coating on a rough metallic substrate by thermal wetting phenomena.

Thin Film Adhesion and Cutting Performance in Diamond-Coated Carbide Tools

  • Jong Hee Kim;Dae Young Jung;Hee Kap Oh
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.105-109
    • /
    • 1997
  • The effects of surface conditions of the C-2 cemented carbide substrate on the adhesion of diamond film were investigated. The substrates were pretreated for different times with Murakami's reagent and then the acid solution of an H2SO4-H2O2. The adhesion strength was estimated by a peeling area around the Rockwell-A indentation. The cutting performance of the diamond-coated tools was evaluated by measuring flank wears in dry turning of Al-17% Si alloy. The morphology of deposited diamond crystallites was dominated by (111) and (220) surfaces with a cubooctahedral shape. The diamond film quality was hardly affected by the surface conditions of the substrate. The variation of tool life with longer substrate etching times resulted from a compromies between the increase of film adhesion at the interface and the decrease of toughness at the substrate surface. The coated tools were mainly deteriorated by chipping and flaking of the diamond film form a lock of adhesion strength, differently from the wear phenomena of PCD tools.

  • PDF

Structure & Fatigue Behavior of TiCN and TiN/TiCN Thin Films (TiCN 및 TiN/TiCN 박막의 구조와 피로거동)

  • Baeg, C.H.;Hong, J.W.;Wey, M.Y.;Kang, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.324-329
    • /
    • 2000
  • Microstructure, mechanical and fatigue behaviors of TiCN and TiN/TiCN thin films, deposited on quenched and tempered STD61 tool steel, were investigated by using XRD, XPS, hardness, adhesion and fatigue tests. The TiCN thin film is grown along the (100), (111) orientation, whereas the TiN/TiCN thin film is grown along the (111) orientation. The preferred orientation of TiN/TiCN thin film strongly depends on the TiN buffer layer whose orientation is (111), as is well-known. The TiN/TiCN thin film showed the higher adhesion compared with TiCN single layer because the TiN buffer layer, having good toughness, reduces the effects of the lower hardness of substrate. In the high cycle tension-tension fatigue test, the fatigue life of the TiCN and the TiN/TiCN coated steel increased approximately two to four times and five to nine times respectively compared with uncoated specimens. The TiN buffer layer in multilayer thin films plays an important role in reducing residual stress and fatigue crack initiation, and then in restraining the fatigue propagation.

  • PDF

Fabrication and Characteristics of Hot-Film Type Micro-flowsensors integrated with RTD (측온저항체 온도센서가 집적화된 발열저항체형 마이크로 유량센서의 제작 및 특성)

  • 정귀상;홍석우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.612-616
    • /
    • 2000
  • This paper describes on the fabrication and characteristics of hot-film type micro-flowsensors integrated with Pt-RTD(resistance thermometer device) and micro-heater on the Si membrane in which MgO thin-film was used as medium layer in order to improve adhesion of Pt thin-film to SiO$_2$layer. The MgO layer improved adhesion of Pt thin-film to SiO$_2$layer without any chemical reactions to Pt thin-film under high annealing temperatures. Output voltages increased due to increase of heat-loss from sensor to external. The output voltage was 82 mV at $N_2$flow rate of 2000 sccm/min heating power of 1.2 W. The response time($\tau$:63%) was about 50 msec when input flow was stepinput

  • PDF

Stability of Organic Thin-Film Transistors Fabricated by Inserting a Polymeric Film (고분자막을 점착층으로 사용한 유기 박막 트랜지스터의 안정성)

  • Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Jun-Ho;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.61-62
    • /
    • 2006
  • In this paper, it was demonstrated that organic thin- film transistors (OTFTs) were fabricated with the organic adhesion layer between an organic semiconductor and a gate insulator by vapor deposition polymerization (VDP) processing. In order to form polymeric film as an adhesion layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing. The saturated slop in the saturation region and the subthreshold nonlinearity in the triode region were c1early observed in the electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure. Field effect mobility, threshold voltage, and on-off current ratio in 15-nm-thick organic adhesion layer were about $0.5\;cm^2/Vs$, -1 V, and $10^6$, respectively. We also demonstrated that threshold voltage depends strongly on the delay time when a gate voltage has been applied to bias stress.

  • PDF