• Title/Summary/Keyword: Thickness optimization

Search Result 771, Processing Time 0.028 seconds

Experimental investigation of blocking mechanism for grouting in water-filled karst conduits

  • Zehua Bu;Zhenhao Xu;Dongdong Pan;Haiyan Li;Jie Liu;Zhaofeng Li
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.155-171
    • /
    • 2023
  • Aiming at the grouting treatment of water inflow in karst conduits, a visualized experiment system for conduit-type grouting blocking was developed. Through the improved water supply system and grouting system, and the optimized multisource information monitoring system, the real-time observation of diffusion and deposition of slurry, and the data acquisition of pressure and velocity during the whole process of grouting were realized, which breaks through the problem that the monitoring element is easy to fail due to slurry adhesion in conventional test system. Based on the grouting experiments in static and flowing water, the diffusion and deposition behavior of the quick-setting slurry under different working conditions were analyzed. The temporal and spatial variation behavior of the pressure and velocity were studied, and the blocking mechanism of the grouting were further revealed. The results showed that: (1) Under the flowing water condition, the counter-flow diffusion distance of slurry was negatively correlated with the flow water velocity and the volume ratio of cement and sodium silicate (C-S ratio), and positively correlated with the grouting volume. The slurry deposition thickness was negatively correlated with the flowing water velocity, and positively correlated with the grouting volume and C-S ratio. (2) The pressure increased slowly before blocking of the flowing water and rapidly after blocking in karst conduits. (3) With the continuous progress of grouting, the flowing water velocity decreased slowly first, then significantly, and finally tended to be stable. According to the research results, some engineering recommendations were put forward for the grouting treatment of the conduit-type water inflow disaster, which has been successfully applied in the treatment project of the China Resources Cement (Pingnan) Limestone Mine. This study provided some guidance and reference for the parameter optimization of grouting for the treatment projects of water inflow in karst conduits.

Effect of perforation patterns on the fundamental natural frequency of microsatellite structure

  • Ahmad M. Baiomy;M. Kassab;B.M. El-Sehily;R.M. El-Kady
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.223-243
    • /
    • 2023
  • There is a burgeoning demand for minimizing the mass of satellites because of its direct impact on reducing launch-to-orbit cost. This must be done without compromising the structure's efficiency. The present paper introduces a relatively low-cost and easily implementable approach for optimizing structural mass to a maximum natural frequency. The natural frequencies of the satellite are of utmost pertinence to the application requirements, as the sensitive electronic instrumentation and onboard computers should not be affected by the vibrations of the satellite structure. This methodology is applied to a realistic model of Al-Azhar University micro-satellite in partnership with the Egyptian Space Agency. The procedure used in structural design can be summarized in two steps. The first step is to select the most favorable primary structural configuration among several different candidate variants. The nominated variant is selected as the one scoring maximum relative dynamic stiffness. The second step is to use perforation patterns reduce the overall mass of structural elements in the selected variant without changing the weight. The results of the presented procedure demonstrate that the mass reduction percentage was found to be 39% when compared to the unperforated configuration that had the same plate thickness. The findings of this study challenge the commonly accepted notion that isogrid perforations are the most effective means of achieving the goal of reducing mass while maintaining stiffness. Rather, the study highlights the potential benefits of exploring a wider range of perforation unit cells during the design process. The study revealed that rectangular perforation patterns had the lowest efficiency in terms of modal stiffness, while triangular patterns resulted in the highest efficiency. These results suggest that there may be significant gains to be made by considering a broader range of perforation shapes and configurations in the design of lightweight structures.

Study on bearing capacity of combined confined concrete arch in large-section tunnel

  • Jiang Bei;Xu Shuo;Wang Qi;Xin Zhong Xin;Wei Hua Yong;Ma Feng Lin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.117-126
    • /
    • 2024
  • There are many challenges in the construction of large-section tunnels, such as extremely soft rock and fractured zones. In order to solve these problems, the confined concrete support technology is proposed to control the surrounding rocks. The large-scale laboratory test is carried out to clarify mechanical behaviours of the combined confined concrete and traditional I-steel arches. The test results show that the bearing capacity of combined confined concrete arch is 3217.5 kN, which is 3.12 times that of the combined I-steel arch. The optimum design method is proposed to select reasonable design parameters for confined concrete arch. The parametric finite element (FE) analysis is carried out to study the effect of the design factors via optimum design method. The steel pipe wall thickness and the longitudinal connection ring spacing have a significant effect on the bearing capacity of the combined confined concrete arch. Based on the above research, the confined concrete support technology is applied on site. The field monitoring results shows that the arch has an excellent control effect on the surrounding rock deformation. The results of this research provide a reference for the support design of surrounding rocks in large-section tunnels.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Comparison of Construction Costs for Bridge Foundation with Optimization of Steel and PHC Embedded Piles (강관 및 PHC 매입말뚝의 최적화에 따른 교량기초의 공사비 비교)

  • Yun, Jung-Mann;Yea, Geu-Guwen;Kim, Hong-Yeon;Kim, Dong-Min;Kim, Soo-Lo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.71-78
    • /
    • 2016
  • In this study, execution costs of the foundation system are compared with PHC and steel pile in the same soil layers and load condition. Steel piles installed on the thin weathered rock are reduced as 12.5% in comparison with the number of PHC piles. Steel piles installed on the soft rock through weathered rock with 1.7m of thickness reduce the number of piles as 35.7% (STK 400) and 46.4% (STK 490), respectively, in comparison with PHC piles installed on the weathered rock. Also, they reduce the number of piles as 26.5% (STK 400) and 38.8% (STK 490), respectively, in comparison with steel piles (STK 400) installed on the weathered rock. When the thickness of footings is constant, steel piles installed on the soft rock may reduce the area of footings up to 12.2% (STK 400) and 45.4% (STK 490), respectively, in comparison with PHC piles installed on the weathered rock. Total cost of foundation system installed on the soft rock with steel piles (STK 400) increases as 12%, whereas in case of replaced with steel piles (STK 490), it reduces as 16% in comparison with PHC piles installed on the weathered rock. This is because the cost reduction due to the number of piles and footing area is more effective despite high cost of steel piles (STK 490). When the thickness of weathered rock is less than 5m, installing steel piles (STK 490) on the soft rock through it is more economic in comparison with installing PHC piles on the weathered rock.

Response for Lead Block Thickness of Parallel Plate Detector using Dielectric Film (유전체필름을 이용한 평행판검출기의 납 차폐물 두께변화에 대한 반응)

  • Kim Yong-Eun;Cho Moon-June;Kim Jun-Sang;Oh Young-Kee;Kim Jhin-Kee;Shin Kyo-Chul;Kim Jeung-Kee;Jeong Dong-Hyeok;Kim Ki-Hwan
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • A parallel plate detector containing PTFE films in FEP film for relative dosimetry was designed to measure the response of detectors to S and 10 MV X-rays from a medical linear accelerator through different thicknesses of lead. The dielectric materials were 100 m thick. The set-up conditions for measurements with this detector were as follows: SSD=100 cm the test detector was at a depth of 5 cm and the reference chamber was at a depth of 10 cm from the phantom surface for 6 and 10 MV X-rays. Lead blocks were designed to cover the irradiated field. They were added to the tray to increase thickness sequentially. We found that the detector response decreased exponentially with the thickness of lead added. The linear attenuation coefficients of the test detector and reference chamber were 0.1414 and 0.541, respectively, for 6 MV X-rays and 0.1358 and 0.5279 for 10 MV X-rays. The test detector response was greater than that of the reference chamber. The response function was calculated from the measured values of the test detector and reference chamber using optimization. These optimized constants for the detector response function were independent of theenergy. As a result of optimizing the response function between detectors, the use of a relative dosimeter was validated, because the response of the test detector was 1% for 6 MV X-rays and 4% for 10 MV X-rays.

  • PDF

Optimization of the Unimorph Cantilever Generator (UCG) Using Pb(Zr0.54Ti0.46)O3 + 0.2 wt% Cr2O3 + 1.0 wt% Nb2O5 thick films (Pb(Zr0.54Ti0.46)O3 + 0.2 wt% Cr2O3 + 1.0 wt% Nb2O5 조성의 압전 후막을 이용한 유니몰프형 캔틸레버 발전기(UCG)의 최적화)

  • Kim, Kyoung-Bum;Kim, Chang-Il;Yun, Ji-Sun;Jeong, Young Hun;Nahm, Jung Hee;Cho, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn;Seong, Tae-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.955-960
    • /
    • 2012
  • We fabricated piezoelectric unimorph cantilever generators (UCG) using $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZCN) piezoelectric thick films, which were produced by a tape casting method. The PZCN thick films were tailored with same width and thickness but different lengths from 7.7 to 57.7 mm in order to evaluate optimized UCG for energy harvesting device applications. When the length of PZCN film was increased, the resonance frequency of UCG was slightly increased from 7 Hz to 8 Hz, which could be due to enlarged area of the highly stiff piezo-ceramic film. However, the output power was proportionally increased with the length of PZCT film and it reached 4.68 mW (1.221 $mW/cm^3$) when the film's length was 57.7 mm under 25 g of tip mass at 8 Hz, which is sufficient for micro-scale device applications.

Inverse Estimation of Geoacoustic Parameters in Shallow Water Using tight Bulb Sound Source (천해환경에서 전구음원을 이용한 지음향인자의 역추정)

  • 한주영;이성욱;나정열;김성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2004
  • An inversion method is presented for the determination of the compressional wave speed, compressional wave attenuation, thickness of the sediment layer and density as a function of depth for a horizontally stratified ocean bottom. An experiment for estimating those properties was conducted in the shallow water of South Sea in Korea. In the experiment, a light bulb implosion and the propagating sound were measured using a VLA (vertical line array). As a method for estimating the geoacoustic properties, a coherent broadband matched field processing combined with Genetic Algorithm was employed. When a time-dependent signal is very short, the Fourier transform results are not accurate, since the frequency components are not locatable in time and the windowed Fourier transform is limited by the length of the window. However, it is possible to do this using the wavelet transform a transform that yields a time-frequency representation of a signal. In this study, this transform is used to identify and extract the acoustic components from multipath time series. The inversion is formulated as an optimization problem which maximizes the cost function defined as a normalized correlation between the measured and modeled signals in the wavelet transform coefficient vector. The experiments and procedures for deploying the light bulbs and the coherent broadband inversion method are described, and the estimated geoacoustic profile in the vicinity of the VLA site is presented.

Heat Exchanging Performance as Affected by Arrangement of Heat Exchanging Pipe (열회수장치의 열교환 파이프배치 형식별 열교환 성능)

  • 윤용철;강종국;서원명
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.101-107
    • /
    • 2002
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared far the comparison of heat recovery performance; A-type is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types (B-type and C-type) modified from the control unit are different in the aspects of airflow direction (U-turn airflow) and pipe arrangement. The results are summarized as follows ; 1. In the case of Type-A, when considering the initial cost and current electricity fee required for system operation, it was expected that one or two years at most would be enough to return the whole cost invested. 2. Type-B and Type-C, basically different with Type-A in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than 25m$^3$.min$^{-1}$ . Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This was assumed to be that air flow resistance in high air capacity reduced the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate of Type-B and Type-C was improved by about 5% and 13%, respectively 3. Desirable blower capacity of these heat recovery units experimented were expected to be about 25m$^3$.min$^{-1}$ , and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it was recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., was required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

Optimization of Culture Condition of Gluconacetobacter hansenii TF-2 for Cellulose Gel Production (Gluconacetobacter hansenii TF-2를 이용한 감귤과즙으로부터의 셀루로스 겔 생산의 최적화)

  • 최경호;정지숙;문철호;김미림
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.176-181
    • /
    • 2004
  • Gluconacetobacter hansenii TF-2, an isolate from black tea fungus, was statically cultivated to ferment cellulose gel from citrus juice. The juice prepared by press filtering of peeled citrus fruit contained 135.5 mg of total sugar/mL, 1.23% of total acid, and average pH of the juice was 3.98. The bacterium produced cellulose gel optimally on the surface of culture broth containing 17% of citrus juice and 10$^{\circ}$Brix of total sugar. The optimum temperature was 3$0^{\circ}C$ for producing acetic acid and gel formation. The bacterium could not produce acetic acid on gel formation at 4$0^{\circ}C$. The optimum pH was 3.0∼4.0 but was not significantly different between pH 3.0∼4.0. The cultivation for 18 days under optimal conditions produced gel as 14.2$\pm$0.6 mm of thickness and acids equivalent to 1.90$\pm$0.22% of acetic acid. The pH of culture broth was stabilized at 2.6∼2.8 during the cultivation. Remaining sugar content was 27.1$\pm$4.2 mg/mL of total sugar and 6.9 mg/mL of reducing sugar. The gel productivity was 137.8$\pm$9.7 g/L.