DOI QR코드

DOI QR Code

Optimization of the Unimorph Cantilever Generator (UCG) Using Pb(Zr0.54Ti0.46)O3 + 0.2 wt% Cr2O3 + 1.0 wt% Nb2O5 thick films

Pb(Zr0.54Ti0.46)O3 + 0.2 wt% Cr2O3 + 1.0 wt% Nb2O5 조성의 압전 후막을 이용한 유니몰프형 캔틸레버 발전기(UCG)의 최적화

  • Kim, Kyoung-Bum (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Chang-Il (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Yun, Ji-Sun (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeong, Young Hun (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Nahm, Jung Hee (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Cho, Jeong-Ho (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Paik, Jong-Hoo (Electronic and Material Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University) ;
  • Seong, Tae-Hyeon (Department of Electrical Engineering, Hanyang University)
  • 김경범 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 김창일 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 윤지선 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 정영훈 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 남중희 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 조정호 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 백종후 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 성태현 (한양대학교 전기공학과)
  • Received : 2012.08.10
  • Accepted : 2012.11.14
  • Published : 2012.12.01

Abstract

We fabricated piezoelectric unimorph cantilever generators (UCG) using $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZCN) piezoelectric thick films, which were produced by a tape casting method. The PZCN thick films were tailored with same width and thickness but different lengths from 7.7 to 57.7 mm in order to evaluate optimized UCG for energy harvesting device applications. When the length of PZCN film was increased, the resonance frequency of UCG was slightly increased from 7 Hz to 8 Hz, which could be due to enlarged area of the highly stiff piezo-ceramic film. However, the output power was proportionally increased with the length of PZCT film and it reached 4.68 mW (1.221 $mW/cm^3$) when the film's length was 57.7 mm under 25 g of tip mass at 8 Hz, which is sufficient for micro-scale device applications.

Keywords

References

  1. X. Gao, W. H. Shih, and W. Y. Shih, Appl. Phys. Lett., 97, 233503 (2010). https://doi.org/10.1063/1.3521389
  2. H. Shen, J. Qiu, and M. Balsi, Sensor. Actuat., A169, 178 (2011).
  3. W. G. Li and S. He, IEEE Trans. Ind. Electron., 57, 868 (2010). https://doi.org/10.1109/TIE.2009.2030761
  4. X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett., 10, 2133 (2010). https://doi.org/10.1021/nl100812k
  5. L. Mateu and F. Moll, J. Intell. Mater. Syst. Struct., 16, 835 (2005). https://doi.org/10.1177/1045389X05055280
  6. R. J. M. Vullers, R. V. Schaijk, I. Coms, C. V. Hoof, and R. Mertens, Solid-State Electron., 53, 684 (2009). https://doi.org/10.1016/j.sse.2008.12.011
  7. E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, J. Electroceram., 19, 349 (2007). https://doi.org/10.1007/s10832-007-9051-4
  8. E. Lefeuvre, G. Sebald, D. Guyomar, M. Lallart, and C. Richard, J. Electroceram., 22, 171 (2009). https://doi.org/10.1007/s10832-007-9361-6
  9. R. A. Islam and S. Priya, J. Am. Ceram. Soc., 89, 3147 (2006). https://doi.org/10.1111/j.1551-2916.2006.01205.x
  10. I. T. Seo, Y. J. Cha, I. Y. Kang, J. H. Choi, S. Nahm, T. H. Seung, and J. H. Paik, J. Am. Ceram. Soc., 94, 1 (2011). https://doi.org/10.1111/j.1551-2916.2010.04210.x
  11. S. Priya, IEEE Trans. Ultra. Ferroelec. Freq. Cont., 57, 2610 (2010). https://doi.org/10.1109/TUFFC.2010.1734
  12. C. Cheon and J. S. Park, J. Mater. Sci. Lett., 16, 2043 (1997). https://doi.org/10.1023/A:1018560717278
  13. L. X. He, M. Gao, C. E. Li, W. M. Zhu, and H. X. Yan, J. Eur. Ceram. Soc., 21, 703 (2001). https://doi.org/10.1016/S0955-2219(00)00256-9
  14. S. Y. Chu, T. Y. Chen, I. T. Tsai, and W. Water, Sensor. Actuat., A113, 198 (2004).
  15. P. Ketsuwan, A. Prasatkhetragarn, S. Ananta, C. C. Huang, D. P. Cann, and R. Yimnirun, Key Eng. Mat., 421, 385 (2010).
  16. D. M. Stein, M. R. Suchomel, and P. K. Davies, Appl. Phys. Lett., 89, 132907 (2006) https://doi.org/10.1063/1.2357871
  17. H. L. Anderson, AIP 50th Anniversary Physics Vade Mecum. (A.I.P., New York, 1981)
  18. M. J. Ramsay and W. W. Clark, Proc. SPIE 8th Annual Smart Materials and Structures Conference, (Newport Beach, 2001) p. 429.
  19. H. W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham, and H. F. Hofmann, Jpn. J. Appl. Phys., 43, 6178 (2004). https://doi.org/10.1143/JJAP.43.6178
  20. H. C. Song, H. C. Kim, C. Y. Kang, H. J. Kim, S. J. Yoon, and D. Y. Jeong, J. Electroceram., 23, 301 (2009). https://doi.org/10.1007/s10832-008-9439-9
  21. Priya, IEEE Trans. Ultra. Ferroelec. Freq. Cont., 57, 2610 (2010). https://doi.org/10.1109/TUFFC.2010.1734
  22. P. Moetaker and Z. A. Nemati, Sensor. Actuat., A141, 463 (2008).
  23. K. B. Kim, C. I. Kim, Y. H. Jeong, Y. J. Lee, J. H. Cho, J. H. Paik, and S. Nahm, J. Eur. Ceram. Soc., 33, 305 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.09.001
  24. C. M. Kim, Master Thesis, p. 95-110, Yonsei University, Seoul (2010).
  25. H. W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham, and H. F. Hofmann, Jpn. J. Appl. Phys., 43, 6178 (2004). https://doi.org/10.1143/JJAP.43.6178