• 제목/요약/키워드: Thickness Uniformity

검색결과 364건 처리시간 0.026초

Growth of graphene:Fundamentals and its application

  • 황찬용;유권재;서은경;김용성;김철기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.38-38
    • /
    • 2010
  • Ever since the experimental discovery of graphene exfoiliated from the graphite flakes by Geim et at., this area has drawn a lot of attention for its possible application in IT industry. For the growth of graphene, chemical vapor deposition (CVD) has been widely used to fabricate the large area graphene. The lateral size of this graphene can be easily controlled by the size of the metal substrate though the chemical etching to remove this substrate is somewhat troublesome. Another problem which is hard to avoid is the folding at the grain boundary. We will discuss the origin of the folding first and introduce the way to avoid this folding. To solve this problem, we have used the various types of micro-thin metal foils. The precise control of hydro-carbon and the carrier gas results in the formation of the graphene on top of substrate. The thickness of graphene layers can be controlled with the control of gas flow on top of Cu substrate in contrast to the previously reported self-limiting growth $behavior^1$. Uniformity of this graphene layer has been checked by micro-raman spectroscopy and SEM. The size of grain can be enhanced by thermal treatment or use of other metal substrate. The dependence of grain size on the lattice size of the substrate will be discussed. By selecting the shape of substrate, we can grow various types of graphene. We will introduce the micron size graphene tube and its application.

  • PDF

$N_2$ 가스 Flow에 의한 LPCVD 방법으로 증착된 다결정 실리콘 박막의 산소농도 저하 (Reduction of Oxygen Concentration in the LPCVD Polysilicon Films Deposited by $N_2$ Gas-Flow Method)

  • 안승중;정민호
    • 한국재료학회지
    • /
    • 제9권3호
    • /
    • pp.269-273
    • /
    • 1999
  • 일반적으로 LPCVD 방법에 의한 다결정 실리콘 박막은 $SiH_4$가스를 열분해하여 증착한다. 본 실험에서는 다결정 실리콘 박막속에 포함된 산소농도를 낮추기 위하여 실리콘 웨이퍼를 반응로 안으로 장착할 때, 20slm의 $N_2$가스를 반응로의 위에서부터 아래로 flow하였으며 박막의 산소농도를 측정하기 위하여 두께가 $1000\AA$인 박막을 증착한 다음 SIMS로 분석한 결과 반응로의 hatch에 있는 짧은 injector를 통하여 20slm의 $N_2$가스를 flow한 경우보다 박막의 산소농도가 ~30배 정도 낮아짐을 알 수 있었다. 긴 injector를 사용하여 증착된 박막의 두께 균일도, particle 및 Rs를 측정하여 박막증착의 재현성이 있음을 평가하였다.

  • PDF

저압 침탄에 의한 Ti-6Al-4V 합금의 표면 특성 개선 (Improvement of Surface Properties of Ti-6A1-4V Alloy by Low Pressure Carburizing)

  • 김지훈;박종덕;김성완
    • 열처리공학회지
    • /
    • 제16권4호
    • /
    • pp.191-196
    • /
    • 2003
  • For improvement of the wear performance of Ti alloy, vacuum-carburizing technique was tried for the first time using propane atmosphere. During the low pressure carburizing carbide was formed at the surface and carbon transfer was occurred from the carbide to the matrix. It was found that: (i) surface hardness increased with the reduction of operating pressure and time; (ii) optimum hardness distribution could be obtained with the proper choice of temperature and carbon flux control; and, (iii) case depth was largely influenced not by time but by temperature. The two steps process was recommended for obtaining thick case depth and high surface hardness of Ti alloy. For the low oxygen partial pressure, it was necessary to introduce additional CO gas to the atmosphere.Grain boundary oxidation and non-uniformity could be prevented.

나노복합체를 함유한 XLPE의 전류밀도에 미치는 온도의 영향 (Effect of Temperature on Current Density of Nano Composite XLPE Material)

  • 정현정;양이슬;남진호;남기준;김동욱
    • 한국전기전자재료학회논문지
    • /
    • 제32권5호
    • /
    • pp.413-417
    • /
    • 2019
  • In this study, the volume resistivity of XLPE materials with various voltage ratings was discussed. The volume resistivity of the developed XPLE nanocomposite was measured, and the conductivity mechanism of the material was also examined. The ASTM D 257 and IEC 60093 measurement methods were used for these tests. The equipment was designed to measure up to a temperature of $200^{\circ}C$, and the electrode structure was designed to maintain the thickness and temperature uniformity of the sample. The conductivity of the sample decreased with temperature, and the samples reached saturation within 500s, after which the conductivity leveled off. By analyzing the current density and the electric field, we can well explain the electric conductivity behavior of our sample with the Schottky mechanism.

전류제어가 가능한 AIP-PVD법으로 증착된 TiMoN 코팅층 특성평가 (Characteristic Evaluation of TiMoN Coating Layer Deposited by Current Control available AIP-PVD Method)

  • 신현정;김동배;김성철;김남수
    • 열처리공학회지
    • /
    • 제32권5호
    • /
    • pp.224-229
    • /
    • 2019
  • PVD coating is a technology that can be applied to various industries, and is widely used for processing molds and machinery, improving performance of core parts, and extending the life. Therefore, there is a need for a research on a device and a process technology that can adjust the performance to suit each application. In this study, a PVD coating device with ion density control was used to deposit a coating layer on SKD 11, a cold die steel, with magnetron currents of 1 A, 2 A, 3 A at arc currents of 80 A, 100 A, 130 A. It examined the mechanical properties for each condition. Increasing the arc current and magnetron current could improve the thickness, adhesion, and hardness of the coating layer. Especially, When the magnetron current was high, it suppressed the droplets that could be generated by the high arc current, showing excellent surface uniformity and adhesion of the coating layer.

적외선 배경신호 처리를 통한 OES 기반 PECVD공정 모니터링 정확도 개선 (OES based PECVD Process Monitoring Accuracy Improvement by IR Background Signal Subtraction from Emission Signal)

  • 이진영;서석준;김대웅;허민;이재옥;강우석
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.5-9
    • /
    • 2019
  • Optical emission spectroscopy is used to identify chemical species and monitor the changes of process results during the plasma process. However, plasma process monitoring or fault detection by using emission signal variation monitoring is vulnerable to background signal fluctuations. IR heaters are used in semiconductor manufacturing chambers where high temperature uniformity and fast response are required. During the process, the IR lamp output fluctuates to maintain a stable process temperature. This IR signal fluctuation reacts as a background signal fluctuation to the spectrometer. In this research, we evaluate the effect of infrared background signal fluctuation on plasma process monitoring and improve the plasma process monitoring accuracy by using simple infrared background signal subtraction method. The effect of infrared background signal fluctuation on plasma process monitoring was evaluated on $SiO_2$ PECVD process. Comparing the $SiO_2$ film thickness and the measured emission line intensity from the by-product molecules, the effect of infrared background signal on plasma process monitoring and the necessity of background signal subtraction method were confirmed.

Simple and Cost-Effective Method for Edge Bead Removal by Using a Taping Method

  • Park, Hyeoung Woo;Kim, H.J.;Roh, Ji Hyoung;Choi, Jong-Kyun;Cha, Kyoung-Rae
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1473-1478
    • /
    • 2018
  • In this study, we have developed a simple and cost-effective method to prevent edge bead formation by covering the edge of a chip-level substrate with heat-resistant tape during patterning using SU-8. Edge beads are a fundamental problem in photoresists and are particularly notable in high-viscosity fluids and thick coatings. Edge beads can give rise to an air gap between the substrate and the patterning mask during UV exposure, which results in non-uniform patterns. Furthermore, the sample may break since the edge bead is in contact with the mask. In particular, the SU-8 coating thickness of the chip-level substrates used in MEMS or BioMEMS may not be properly controlled because of the presence of edge beads. The proposed method to solve the edge bead problem can be easily and economically utilized without the need for a special device or chemicals. This method is simple and prevents edge bead formation on the sample substrate. Despite the small loss in the taping area, the uniformity of the SU-8 coating is improved from 50.9% to 5.6%.

이온빔 스퍼터링으로 증착한 IZTO 박막의 결정화 거동과 전기적 특성 분석 (Crystallization Behavior and Electrical Properties of IZTO Thin Films Fabricated by Ion-Beam Sputtering)

  • 박지운;박양규;이희영
    • 한국전기전자재료학회논문지
    • /
    • 제34권2호
    • /
    • pp.99-104
    • /
    • 2021
  • Ion-beam sputtering (IBS) was used to deposit semiconducting IZTO (indium zinc tin oxide) thin films onto heavily-doped Si substrates using a sintered ceramic target with the nominal composition In0.4Zn0.5Sn0.1O1.5, which could work as a channel layer for oxide TFT (oxide thin film transistor) devices. The crystallization behavior and electrical properties were examined for the films in terms of deposition parameters, i.e. target tilt angle and substrate temperature during deposition. The thickness uniformity of the films were examined using a stylus profilometer. The observed difference in electrical properties was not related to the degree of crystallization but to the deposition temperature which affected charge carrier concentration (n), electrical resistivity (ρ), sheet resistance (Rs), and Hall mobility (μH) values of the films.

양자점 감응 태양전지의 Cu2S 상대 전극 제작조건 최적화 (Optimization of Fabrication Conditions for Cu2S Counter Electrodes of Quantum Dot-Sensitized Solar Cells)

  • 정성목;하승범;서주원;김재엽
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.663-668
    • /
    • 2021
  • For the development of highly efficient quantum dot-sensitized solar cells (QDSCs), it is important to enhance the electrocatalytic activity of the counter electrodes (CEs). Herein, a fabrication process of Cu2S CEs are optimized for the development highly efficient QDSCs. The surface of brass film is treated with HCl solution to prepare the Cu2S CEs, and the concentraion as well as the temperature of HCl solution are controlled. It is found that the uniformity for the thickness of prepared Cu2S CEs is enhanced when the diluted HCl solution is used, compared to the HCl solution of standard concentration. In addition, the electrocatalytic activity of the Cu2S CEs is also increased with the modificed process, which is confirmed by impedance data and Tafel polarization curves. As a result, the photoconversion efficiency of QDSCs is improved from 4.49% up to 5.73%, when the concentraion and temperature of the HCl treatment are efficiently optimized.

Infiltration characteristic of modified slurry and support efficiency of filter cake in silty sand strata

  • Sai Zhang;Jianwen Ding;Ning Jiao;Shuai Sun;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.125-138
    • /
    • 2023
  • To improve the understanding of infiltration characteristic of modified slurry and the support efficiency of filter cake in silty sand strata, the slurry infiltration (SI) and filter cake formation (FCF) were investigated in a laboratory apparatus. The water discharge and the excess pore pressure at different depths of silty sand strata were measured during SI. The relationship between permeability coefficient/thickness ratio of filter cake (kc/ΔL) and effective slurry pressure conversion rate of filter cake (η) were analyzed. Moreover, the SI and FCF process as well as the modification mechanism of CMC (carboxymethyl cellulose) were clarified. The experimental results indicate the formation of only external filter cake in the silty sand strata. The slurry particles obtain thicker water membrane after being modified by CMC, which blocks partial water path in filter cake and decreases the water discharge significantly. The silty sand excavated from tunnel face also contributes to the water discharge reduction. The kc of the external filter cake ranges from 3.83×10-8 cm/s to 7.44×10-8 cm/s. The η of the external filter cake is over 96%, which decreases with increasing kc/ΔL. A silty sand content within 10% is suggested during construction to ensure the uniformity of the filter cake.